Today: Floats!

Fractional binary numbers
- What is 1011/101?

Fractional Binary Numbers
- Representation
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: $\frac{\sum b_i 2^{-i}}{2^n}$

Fractional Binary Numbers: Examples
- Value
 - $\frac{1}{2}$ and $\frac{3}{4}$
 - $\frac{1}{4}$ and $\frac{7}{8}$
 - $\frac{3}{8}$ and $\frac{5}{8}$

- Representation
 - 0.1011101_2
 - 0.1111101_2

- Observations
 - Divide by 2 by shifting right
 - Multiply by 2 by shifting left
 - Numbers of form $0.11111\ldots$ are just below 1.0
 - $1/2 = 1/4 + 1/8 + \ldots + 1/2^n + \ldots \rightarrow 1.0$
 - Use notation $1.0 - \epsilon$

Today Topics: Floating Point
- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Representable Numbers
- Limitation
 - Can only exactly represent numbers of the form $x/2^n$
 - Other rational numbers have repeating bit representations

- Value
 - $1/3$
 - $1/5$
 - $1/10$

- Representation
 - $0.010101010101011\ldots$
 - $0.00110011001100111\ldots$
 - $0.00011001100110011111\ldots$
Fixed Point Representation

- float \rightarrow 32 bits; double \rightarrow 64 bits
- We might try representing fractional binary numbers by picking a fixed place for an implied binary point

 - “fixed point binary numbers”

 - Let’s do that, using 8 bit floating point numbers as an example

 1. The binary point is between bits 2 and 3.

 \[b_1, b_2, b_3, b_4 \] \[\{ b_5, b_6, b_7 \} \]

 2. The binary point is between bits 4 and 5.

 \[b_1, b_2, b_3, b_4 \] \[\{ b_5, b_6, b_7, b_8 \} \]

 - The position of the binary point affects the range and precision:
 - Range: difference between the largest and smallest representable numbers.
 - Precision: smallest possible difference between any two numbers.

What else could we do?

IEEE Floating Point

- Fixing fixed point: analogous to scientific notation
 - $\times 10^n$:
 - 1.2×10^7; 0.0000032; 1.2×10^{-6}

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs

- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

- Numerical Form:

 \[(-1)^s \times M \times 2^E \]

 - Sign bit s determines whether number is negative or positive.
 - Significant (mantissa) M normally a fractional value in range [1.0,2.0).
 - Exponent E weights value by power of two

- Encoding
 - MSB s is sign bit.
 - frac field encodes M (but is not equal to M)
 - exp field encodes E (but is not equal to E)

Precisions

- Single precision: 32 bits

 - s exp frac

 \[1 \quad 8 \quad 24 \]

- Double precision: 64 bits

 - s exp frac

 \[
 1 \quad 11 \quad 52
 \]

- Extended precision: 80 bits (Intel only)

 - s exp frac

 \[
 1 \quad 15 \quad 63 \text{ or } 64
 \]
Normalization and Special Values

- "Normalized" means mantissa has form $1.xxx$.
 - 0.011×2^5 and 1.1×2^3 represent the same number, but the latter makes better use of the available bits.
 - Since we know the mantissa starts with a 1, don't bother to store it.

- How do we do $0/0$? How about $1/0$?

Special values:

- The float value $00...0$ represents zero.
- If the exp $= 11...1$ and the mantissa $= 00...0$, it represents $\pm \infty$.
 - E.g., $10.0/0.0 \rightarrow \infty$ if the exp $= 11...1$ and the mantissa $= 00...0$, it represents NaN.
 - "Not a Number".
 - Results from operations with undefined result.
 - E.g., $0/0$.

How do we do operations?

- Is representation exact?
- How are the operations carried out?

Floating Point Operations: Basic Idea

- $x + y = \text{Round}(x + y)$
- $x \times y = \text{Round}(x \times y)$

Basic idea:

- First, compute exact result.
- Make it fit into desired precision.
 - Possibly overflow if exponent too large
 - Possibly round to fit $\pm \text{Frac}$

Floating Point Multiplication

$\text{(1)}^2 \text{ M}_1 \text{ z}^2 \times \text{(1)}^2 \text{ M}_2 \text{ z}^2$

- Exact Result: $\text{(1)}^2 \text{ M}_1 \text{ z}^2$
 - Sign s:
 - Significant M: $\text{M}_1 \times \text{M}_2$.
 - Exponent E: $E_1 + E_2$

Fixing:

- If $M > 2$, shift M right, increment E.
- If E out of range, overflow.
- Round M to fit Frac precision.

Implementation:

- What is hardest?

Floating Point Addition

$\text{(1)}^1 \text{ M}_1 \text{ z}^1 + \text{(1)}^2 \text{ M}_2 \text{ z}^2$

Assume $E_1 > E_2$

- Exact Result: $\text{(1)}^1 \text{ M}_1 \text{ z}^1$
 - Sign s, significant M:
 - Result of signed align & add E.
 - Exponent E_1.

Fixing:

- If $M = 2$, shift M right, decrement E.
- If $M < 1$, shift M left k positions, decrement E by k.
- Overflow if E out of range.
- Round M to fit Frac precision.
Hmm... if we round at every operation...

\[(a + b) + c\]

Floating Point in C

- C Guarantees Two Levels
 - float single precision
 - double double precision

- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - Double/float \rightarrow int
 - truncates fractional part
 - like rounding toward zero
 - not defined when out of range or NaN: generally sets to TMin
 - int \rightarrow float
 - exact conversion, why?
 - int \rightarrow float
 - will round according to rounding mode

Mathematical Properties of FP Operations

- Not really associative or distributive due to rounding
- Infinities and NaNs cause issues
- Overflow and infinity

Memory Referencing Bug (Revisited)

```c
#include <stdio.h>

int main(int argc, char* argv[]) {
    float f1 = 3.14;
    float f2 = 0.89;
    int i;
    f2 = 1.1/0.89;  //  
    printf("Value of f2 after division: \%f\n", f2);
    if (f2 == 1.23456789) {
        printf("Value of f2 matches expected value: true\n", f2);
    } else {
        printf("Value of f2 does not match expected value: false\n", f2);
    }
    return 0;
}
```

Explanation:

- Line 7: `f2 = 1.1/0.89;`
- Location accessed by `main()`

Floating Point and the Programmer

```c
#include <stdio.h>

int main(int argc, char* argv[]) {
    float f1 = 3.14;
    float f2 = 0.89;
    int i;
    f2 = 1.1/0.89;  //  
    printf("Value of f2 after division: \%f\n", f2);
    if (f2 == 1.23456789) {
        printf("Value of f2 matches expected value: true\n", f2);
    } else {
        printf("Value of f2 does not match expected value: false\n", f2);
    }
    return 0;
}
```
Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some "simple fractions" have no exact representation
 - E.g., 0.1
 - Can also lose precision, unlike ints
 - “Every operation gets a slightly wrong result”

- Mathematically equivalent ways of writing an expression may compute differing results

- NEVER test floating point values for equality!