Today Topics: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Fractional binary numbers

- What is 1011.101?
Fractional Binary Numbers

- Bits to right of “binary point” represent fractional powers of 2
- Represents rational number:
 \[\sum_{k=-j}^{i} b_k \cdot 2^k \]
Fractional Binary Numbers: Examples

- **Value**
 - 5 and 3/4, **Representation**: 101.11_2
 - 2 and 7/8, **Representation**: 10.111_2
 - 63/64, **Representation**: 0.1111111_2

- **Observations**
 - Divide by 2 by shifting right
 - Multiply by 2 by shifting left
 - Numbers of form $0.111111..._2$ are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation $1.0 - \varepsilon$
Representable Numbers

- **Limitation**
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations

- **Value**

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>0.0101010101₀₁₀�₂</td>
</tr>
<tr>
<td>1/5</td>
<td>0.001100110011₀₀₁₁₀₀�₂</td>
</tr>
<tr>
<td>1/10</td>
<td>0.000110011001₁₀₀₁₁₀₀₁₁₀₀₁₁₀₀₁₁₀₀₁₁₀₀₁₁₀₀₁₁₀₀₁₁₀₀₁�₂</td>
</tr>
</tbody>
</table>
IEEE Floating Point

- **IEEE Standard 754**
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs

- **Driven by numerical concerns**
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard
Floating Point Representation

- Numerical Form:
 \[(-1)^s \times M \times 2^E \]
 - Sign bit \(s \) determines whether number is negative or positive
 - Significand (mantissa) \(M \) normally a fractional value in range \([1.0, 2.0)\).
 - Exponent \(E \) weights value by power of two

- Encoding
 - MSB \(s \) is sign bit \(s \)
 - \texttt{frac} field \textit{encodes} \(M \) (but is not equal to \(M \))
 - \texttt{exp} field \textit{encodes} \(E \) (but is not equal to \(E \))
Precisions

- **Single precision: 32 bits**
 - Exponent: 8 bits
 - Fraction: 23 bits

- **Double precision: 64 bits**
 - Exponent: 11 bits
 - Fraction: 52 bits

- **Extended precision: 80 bits (Intel only)**
 - Exponent: 15 bits
 - Fraction: 63 or 64 bits
Normalized Values

- **Condition:** \(\text{exp} \neq 000\ldots0 \) and \(\text{exp} \neq 111\ldots1 \)

- **Exponent coded as biased value:** \(\text{exp} = E + \text{Bias} \)
 - \(\text{exp} \) is an unsigned value ranging from 1 to \(2^{e-2} \)
 - Allows negative values for \(E (= \text{exp} - \text{Bias}) \)
 - \(\text{Bias} = 2^{e-1} - 1 \), where \(e \) is number of exponent bits (bits in \(\text{exp} \))
 - Single precision: 127 (\(\text{exp} \): 1...254, \(E \): -126...127)
 - Double precision: 1023 (\(\text{exp} \): 1...2046, \(E \): -1022...1023)

- **Significand coded with implied leading 1:** \(M = 1 . \text{xxx}\ldots\text{x} \)
 - \(\text{xxx}\ldots\text{x} \): bits of \(\text{frac} \)
 - Minimum when \(000\ldots0 \) (\(M = 1.0 \))
 - Maximum when \(111\ldots1 \) (\(M = 2.0 - \varepsilon \))
 - Get extra leading bit for “free”
Normalized Encoding Example

- **Value:** Float $F = 12345.0$;
 - $12345_{10} = 11000000111001_2$
 - $= 1.1000000111001 \times 2^{13}$

- **Significand**

 $M = 1.1000000111001$

 $frac = 100000011100100000000002$

- **Exponent**

 $E = 13$

 $Bias = 127$

 $exp = 140 = 10001100_2$

- **Result:**

 \[
 \begin{array}{c}
 0 \\
 10001100 \\
 100000011100100000000000 \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 \text{s} \\
 \text{exp} \\
 \text{frac} \\
 \end{array}
 \]
Denormalized Values

- **Condition:** \(\text{exp} = 000\ldots0 \)

- **Exponent value:** \(E = \text{exp} - \text{Bias} + 1 \) (instead of \(E = \text{exp} - \text{Bias} \))

- **Significand coded with implied leading 0:** \(M = 0 . \text{xxx}\ldots x_2 \)
 - \(\text{xxx}\ldots x \): bits of \(\text{frac} \)

- **Cases**
 - \(\text{exp} = 000\ldots0, \text{frac} = 000\ldots0 \)
 - Represents value 0
 - Note distinct values: +0 and –0 (why?)
 - \(\text{exp} = 000\ldots0, \text{frac} \neq 000\ldots0 \)
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced
Special Values

- **Condition:** $\exp = 111...1$

- **Case:** $\exp = 111...1$, $\frac{\text{frac}}{000...0}$
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -1.0/0.0 = -\infty$

- **Case:** $\exp = 111...1$, $\frac{\text{frac}}{\neq 000...0}$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., $\sqrt{-1}$, $\infty - \infty$, $\infty * 0$
Visualization: Floating Point Encodings
Tiny Floating Point Example

8-bit Floating Point Representation
- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the \textit{frac}

Same general form as IEEE Format
- normalized, denormalized
- representation of 0, NaN, infinity
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>s exp frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0000 000</td>
<td>-6</td>
<td>0</td>
</tr>
<tr>
<td>0 0000 001</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
</tr>
<tr>
<td>0 0000 010</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
</tr>
<tr>
<td>0 0000 110</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
</tr>
<tr>
<td>0 0000 111</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
</tr>
</tbody>
</table>

Denormalized numbers

<table>
<thead>
<tr>
<th>s exp frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0001 000</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
</tr>
<tr>
<td>0 0001 001</td>
<td>-6</td>
<td>9/8*1/64 = 9/512</td>
</tr>
<tr>
<td>0 0110 110</td>
<td>-1</td>
<td>14/8*1/2 = 14/16</td>
</tr>
<tr>
<td>0 0110 111</td>
<td>-1</td>
<td>15/8*1/2 = 15/16</td>
</tr>
<tr>
<td>0 0111 000</td>
<td>0</td>
<td>8/8*1 = 1</td>
</tr>
<tr>
<td>0 0111 001</td>
<td>0</td>
<td>9/8*1 = 9/8</td>
</tr>
<tr>
<td>0 0111 010</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
</tr>
<tr>
<td>0 1110 110</td>
<td>7</td>
<td>14/8*128 = 224</td>
</tr>
<tr>
<td>0 1110 111</td>
<td>7</td>
<td>15/8*128 = 240</td>
</tr>
</tbody>
</table>

Normalized numbers

<table>
<thead>
<tr>
<th>s exp frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1111 000</td>
<td>n/a</td>
<td>inf</td>
</tr>
</tbody>
</table>

- **Closest to zero**: 0
- **Largest denorm**: 7/8*1/64 = 7/512
- **Smallest norm**: 8/8*1/64 = 8/512
- **Closest to 1 below**: 14/8*1/2 = 14/16
- **Closest to 1 above**: 9/8*1 = 9/8
- **Largest norm**: 14/8*128 = 240
Distribution of Values

- **6-bit IEEE-like format**
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is $2^{3-1} - 1 = 3$

- Notice how the distribution gets denser toward zero.
Distribution of Values (close-up view)

- **6-bit IEEE-like format**
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

![Diagram showing the distribution of values with symbols for denormalized, normalized, and infinity.]
Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>$2^{-{23,52}} \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td>Single</td>
<td>≈ 1.4 * 10^{-45}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double</td>
<td>≈ 4.9 * 10^{-324}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
<td>$(1.0 - \varepsilon) \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td>Single</td>
<td>≈ 1.18 * 10^{-38}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double</td>
<td>≈ 2.2 * 10^{-308}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smallest Pos. Norm.</td>
<td>00...01</td>
<td>00...00</td>
<td>$1.0 \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td>Just larger than largest denormalized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
<td>$(2.0 - \varepsilon) \times 2^{127,1023}$</td>
</tr>
<tr>
<td>Single</td>
<td>≈ 3.4 * 10^{38}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double</td>
<td>≈ 1.8 * 10^{308}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Special Properties of Encoding

- **Floating point zero (0⁺) exactly the same bits as integer zero**
 - All bits = 0

- **Can (Almost) Use Unsigned Integer Comparison**
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity
Floating Point Operations: Basic Idea

- $x +_f y = \text{Round}(x + y)$
- $x *_f y = \text{Round}(x * y)$

Basic idea
- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac
Rounding

- **Rounding Modes (illustrate with $ rounding)**

<table>
<thead>
<tr>
<th></th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>–$1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towards zero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–$1</td>
</tr>
<tr>
<td>Round down ((-\infty))</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>–$2</td>
</tr>
<tr>
<td>Round up ((+\infty))</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$3</td>
<td>–$1</td>
</tr>
<tr>
<td>Nearest (default)</td>
<td>$1</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>–$2</td>
</tr>
</tbody>
</table>

- **What are the advantages of the modes?**
Closer Look at Round-To-Nearest

- **Default Rounding Mode**
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under-estimated

- **Applying to Other Decimal Places / Bit Positions**
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth
 - 1.2349999 → 1.23 (Less than half way)
 - 1.2350001 → 1.24 (Greater than half way)
 - 1.2350000 → 1.24 (Half way—round up)
 - 1.2450000 → 1.24 (Half way—round down)
Rounding Binary Numbers

- **Binary Fractional Numbers**
 - “Half way” when bits to right of rounding position = \(100\ldots_2\)

- **Examples**
 - Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>[10.00011]</td>
<td>10.00_2</td>
<td>(<1/2—down)</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>[10.00110]</td>
<td>10.01_2</td>
<td>(>1/2—up)</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>[10.11100]</td>
<td>11.00_2</td>
<td>(1/2—up)</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>[10.10100]</td>
<td>10.10_2</td>
<td>(1/2—down)</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>
Floating Point Multiplication

\[(-1)^{s_1} M_1 \ 2^{E_1} \ \ast \ (-1)^{s_2} M_2 \ 2^{E_2} \]

Exact Result: \((-1)^s M \ 2^E\)

- **Sign s:** \(s_1 \wedge s_2\)
- **Significand M:** \(M_1 \ast M_2\)
- **Exponent E:** \(E_1 + E_2\)

Fixing

- If \(M \geq 2\), shift \(M\) right, increment \(E\)
- If \(E\) out of range, overflow
- Round \(M\) to fit \(\text{frac}\) precision

Implementation

- Biggest chore is multiplying significands
Floating Point Addition

\((-1)^{s_1} M_1 \ 2^{E_1} + (-1)^{s_2} M_2 \ 2^{E_2}\)

Assume \(E_1 > E_2\)

Exact Result: \((-1)^s M \ 2^E\)
- Sign \(s\), significand \(M\):
 - Result of signed align & add
- Exponent \(E\):
 - \(E_1\)

Fixing
- If \(M \geq 2\), shift \(M\) right, increment \(E\)
- if \(M < 1\), shift \(M\) left \(k\) positions, decrement \(E\) by \(k\)
- Overflow if \(E\) out of range
- Round \(M\) to fit \(\text{frac}\) precision
Hmm... if we round at every operation...
Mathematical Properties of FP Operations

- Not really associative or distributive due to rounding
- Infinities and NaNs cause issues (e.g., no additive inverse)
- Overflow and infinity
Floating Point in C

C Guarantees Two Levels

- float single precision
- double double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- Double/float \rightarrow int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to Tmin
- int \rightarrow double
 - Exact conversion, as long as int has \leq 53 bit word size
- int \rightarrow float
 - Will round according to rounding mode
Memory Referencing Bug (Revisited)

```c
double fun(int i) {
    volatile double d[1] = {3.14};
    volatile long int a[2];
    a[i] = 1073741824; /* Possibly out of bounds */
    return d[0];
}
```

<table>
<thead>
<tr>
<th>Argument</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>fun(0)</td>
<td>3.14</td>
</tr>
<tr>
<td>fun(1)</td>
<td>3.14</td>
</tr>
<tr>
<td>fun(2)</td>
<td>3.1399998664856</td>
</tr>
<tr>
<td>fun(3)</td>
<td>2.00000061035156</td>
</tr>
<tr>
<td>fun(4)</td>
<td>3.14, then segmentation fault</td>
</tr>
</tbody>
</table>

Explanation:

<table>
<thead>
<tr>
<th>Saved State</th>
<th>Location accessed by <code>fun(i)</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>d7 ... d4</td>
<td></td>
</tr>
<tr>
<td>d3 ... d0</td>
<td></td>
</tr>
<tr>
<td>a[1]</td>
<td></td>
</tr>
<tr>
<td>a[0]</td>
<td></td>
</tr>
</tbody>
</table>
Representing 3.14 as a Double FP Number

- $1073741824 = 0100\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$
- $3.14 = 11.0010\ 0011\ 1101\ 0111\ 0000\ 1010\ 000...$
- $(-1)^s\ M\ 2^E$
 - $S = 0$ encoded as 0
 - $M = 1.1001\ 0001\ 1110\ 1011\ 1000\ 0101\ 000...$ (leading 1 left out)
 - $E = 1$ encoded as 1024 (with bias)

\[
\begin{array}{c|c|c}
 s & \text{exp (11)} & \text{frac (first 20 bits)} \\
 \hline
 0 & 100\ 0000\ 0000 & 1001\ 0001\ 1110\ 1011\ 1000 \\
\end{array}
\]

\[
\begin{array}{c|c}
 \text{frac (another 32 bits)} & \\
 \hline
 0101\ 0000 & ...
\end{array}
\]
Memory Referencing Bug (Revisited)

double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

fun(0) → 3.14
fun(1) → 3.14
fun(2) → 3.1399998664856
fun(3) → 2.00000061035156
fun(4) → 3.14, then segmentation fault

<table>
<thead>
<tr>
<th>Saved State</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>d7 ... d4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0100 0000 0000 0000 0000 0000 0000 0000</td>
</tr>
<tr>
<td>d3 ... d0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0100 0000 0000 0000 0000 0000 0000 0000</td>
</tr>
<tr>
<td>a[1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0100 0000 0000 0000 0000 0000 0000 0000</td>
</tr>
<tr>
<td>a[0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0100 0000 0000 0000 0000 0000 0000 0000</td>
</tr>
</tbody>
</table>

Location accessed by `fun(i)`
Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form $M \times 2^E$
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers