The Hardware/Software Interface
CSE351 Spring 2011

Module 3: Integers
Monday, April 4, 2011
Today’s Topics

- Representation of integers: unsigned and signed
- Casting
- Arithmetic and shifting
- Sign extension
Encoding Integers

- The hardware (and C) supports two flavors of integers:
 - unsigned – only the non-negatives
 - signed – both negatives and non-negatives

- There are only 2^W distinct bit patterns of W bits, so...
 - Can't represent all the integers
 - Unsigned values are $0 \ldots 2^{W-1}$
 - Signed values are $-2^{W-1} \ldots 2^{W-1}-1$
Unsigned Integers

- Unsigned values are just what you expect
 - \(b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + \ldots + b_12^1 + b_02^0 \)
 - Interesting aside: \(1+2+4+8+\ldots+2^{N-1} = 2^N-1 \)

- You add/subtract them using the normal “carry/borrow” rules, just in binary

- An important use of unsigned integers in C is pointers
 - There are no negative memory addresses
Signed Integers

- Let's do the natural thing for the positives
 - They correspond to the unsigned integers of the same value
 - Example (8 bits): 0x00 = 0, 0x01 = 1, ..., 0x7F = 127

- But, we need to let about half of them be negative
 - Use the high order bit to indicate 'negative'
 - Call it “the sign bit”
 - Examples (8 bits):
 - 0x00 = 00000000₂ is non-negative, because the sign bit is 0
 - 0x7F = 01111111₂ is non-negative
 - 0x80 = 10000000₂ is negative
Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - Possibility 1: 10000001_2
 Use the MSB for “+ or -”, and the other bits to give magnitude
Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - Possibility 1: 10000001_2
 Use the MSB for “+ or -”, and the other bits to give magnitude
 (Unfortunate side effect: there are two representations of 0!)
Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - Possibility 1: \(10000001_2\)
 Use the MSB for “+ or -”, and the other bits to give magnitude
 Another problem: math is cumbersome

\[4 - 3 != 4 + (-3)\]
Ones’ Complement Negatives

- How should we represent -1 in binary?
 - Possibility 2: 11111110_2
 Negative numbers: bitwise complements of positive numbers
 It would be handy if we could use the same hardware adder to add signed integers as unsigned

![Diagram showing binary numbers and their complements]
Ones’ Complement Negatives

- How should we represent -1 in binary?
 - Possibility 2: \(11111110_2\)
 Negative numbers: bitwise complements of positive numbers

- Solves the arithmetic problem

<table>
<thead>
<tr>
<th>Add</th>
<th>Invert, add, add carry</th>
<th>Invert and add</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 0100</td>
<td>4 0100</td>
<td>- 4 1011</td>
</tr>
<tr>
<td>+ 3 + 0011</td>
<td>- 3 + 1100</td>
<td>+ 3 + 0011</td>
</tr>
<tr>
<td>= 7 0111</td>
<td>= 1 10000</td>
<td>= 1 1110</td>
</tr>
<tr>
<td>add carry: +1</td>
<td>= 0001</td>
<td></td>
</tr>
</tbody>
</table>

end-around carry
Ones’ Complement Negatives

- How should we represent -1 in binary?

 - Possibility 2: 11111110₂
 Negative numbers: bitwise complements of positive numbers
 Use the same hardware adder to add signed integers as unsigned
 (but we have to keep track of the end-around carry bit)

Why does it work?

- The ones’ complement of a 4-bit positive number \(y \) is \(1111₂ \) – \(y \)
 - \(0111 \equiv 7 \)₁₀
 - \(1111₂ – 0111₂ = 1000₂ \equiv –7 \)₁₀
- \(1111₂ \) is 1 less than \(10000₂ = 2^4 – 1 \)
 - \(-y\) is represented by \((2^4 – 1) – y\)
Ones’ Complement Negatives

- How should we represent \(-1\) in binary?
 - Possibility 2: \(11111110_2\)
 Negative numbers: bitwise complements of positive numbers
 (But there are still two representations of 0!)
Two's Complement Negatives

- How should we represent -1 in binary?
 - Possibility 3: 1111111_2
 Bitwise complement plus one
 (Only one zero)
Two's Complement Negatives

- How should we represent -1 in binary?
 - Possibility 3: 11111111_2
 Bitwise complement plus one
 (Only one zero)
 - Simplifies arithmetic
 Use the same hardware adder to add signed integers as unsigned
 (simple addition; discard the highest carry bit)

<table>
<thead>
<tr>
<th>Add</th>
<th>Invert and add</th>
<th>Invert and add</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>+ 3</td>
<td>+ 0011</td>
<td>−3</td>
</tr>
<tr>
<td>= 7</td>
<td>= 0111</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 1111</td>
</tr>
</tbody>
</table>
Two's Complement Negatives

- How should we represent -1 in binary?
 - Two’s complement: Bitwise complement plus one

Why does it work?

- Recall: The ones’ complement of a b-bit positive number y is $(2^b - 1) - y$
- Two’s complement adds one to the bitwise complement, thus, $-y$ is $2^b - y$
 - $-y$ and $2^b - y$ are equal mod 2^b
 (have the same remainder when divided by 2^b)
 - Ignoring carries is equivalent to doing arithmetic mod 2^b
Two's Complement Negatives

- How should we represent -1 in binary?
 - Two’s complement: Bitwise complement plus one

- What should the 8-bit representation of -1 be?

 \[
 \begin{array}{c}
 00000001 \\
 +????????? \\
 00000000
 \end{array}
 \]

 \[
 \begin{array}{c}
 00000010 \\
 +????????? \\
 00000000
 \end{array}
 \]

 \[
 \begin{array}{c}
 00000010 \\
 +????????? \\
 +????????? \\
 00000000 \\
 00000000
 \end{array}
 \]

(want whichever bit string gives right result)
Unsigned & Signed Numeric Values

- Both signed and unsigned integers have limits
 - If you compute a number that is too big, you wrap: \(6 + 4 = ?\) \(15U + 2U = ?\)
 - If you compute a number that is too small, you wrap: \(-7 - 3 = ?\) \(0U - 2U = ?\)
 - Answers are only correct mod \(2^b\)

- The CPU may be capable of “throwing an exception” for overflow on signed values
 - It won't for unsigned

- But C and Java just cruise along silently when overflow occurs...

<table>
<thead>
<tr>
<th>(X)</th>
<th>Unsigned</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Numeric Ranges

- **Unsigned Values**
 - \(UMin = 0 \)
 - 000...0
 - \(UMax = 2^w - 1 \)
 - 111...1

- **Two’s Complement Values**
 - \(Tmin = -2^{w-1} \)
 - 100...0
 - \(Tmax = 2^{w-1} - 1 \)
 - 011...1

- **Other Values**
 - Minus 1
 - 111...1 0xFFFFFFFF (32 bits)

Values for \(W = 16 \)

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

■ Observations
- $|TMin| = Tmax + 1$
 - Asymmetric range
- $UMax = 2 * Tmax + 1$

■ C Programming
- `#include <limits.h>`
- Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
- Values platform specific
Conversion Visualized

2’s Comp. → Unsigned

Ordering Inversion
Negative → Big Positive

2’s Complement Range

TMax

0

-1

-2

TMin

UMax
UMax - 1

TMax + 1
TMax

Unsigned Range
Signed vs. Unsigned in C

- **Constants**
 - By default are considered to be signed integers
 - Unsigned if have “U” as suffix
 - 0U, 4294967259U

- **Casting**
 - int tx, ty;
 - unsigned ux, uy;
 - Explicit casting between signed & unsigned same as U2T and T2U
 - tx = (int) ux;
 - uy = (unsigned) ty;
 - Implicit casting also occurs via assignments and procedure calls
 - tx = ux;
 - uy = ty;
Casting Surprises

Expression Evaluation

If mix unsigned and signed in single expression,

signed values implicitly cast to unsigned

Including comparison operations <, >, ==, <=, >=

Examples for $W = 32$:

<table>
<thead>
<tr>
<th>Constant$_1$</th>
<th>Constant$_2$</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483647-1</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483647-1</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Shift Operations

Left shift: \(x << y \)
- Shift bit-vector \(x \) left by \(y \) positions
- Throw away extra bits on left
- Fill with 0s on right
- Multiply by \(2^{**y} \)

Right shift: \(x >> y \)
- Shift bit-vector \(x \) right by \(y \) positions
- Throw away extra bits on right
- Logical shift (for unsigned)
 - Fill with 0s on left
- Arithmetic shift (for signed)
 - Replicate most significant bit on right
 - Maintain sign of \(x \)
- Divide by \(2^{**y} \)
- correct truncation (towards 0) requires some care with signed numbers

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Logical (>> 2)</td>
<td>00011000</td>
</tr>
<tr>
<td>Arithmetic (>> 2)</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Logical (>> 2)</td>
<td>00101000</td>
</tr>
<tr>
<td>Arithmetic (>> 2)</td>
<td>11101000</td>
</tr>
</tbody>
</table>

Undefined behavior when \(y < 0 \) or \(y \geq \text{word_size} \)
Using Shifts and Masks

Extract 2nd most significant byte of an integer

First shift: \(x \gg (2 \times 8) \)

Then mask: \((x \gg 16) \& 0xFF\)

\(x \)	01100001	01100010	01100111	01100100
\(x \gg 16 \)	00000000	00000000	01100001	01100100
\((x \gg 16) \& 0xFF\)	00000000	00000000	00000000	11111111
\(00000000 \) & \(00000000 \) & \(00000000 \) & \(01100010 \)				

Extracting the sign bit

\((x \gg 31) \& 1\) - need the “\& 1” to clear out all other bits except LSB

Conditionals as Boolean expressions (assuming \(x \) is 0 or 1 here)

if \((x)\) \(a=y \) else \(a=z \); which is the same as \(a = x ? y : z \);

Can be re-written as: \(a = ((x << 31) \gg 31) \& y + (!x << 31) \gg 31) \& z \)
Sign Extension

Task:

Given w-bit signed integer x

Convert it to $w+k$-bit integer with same value

Rule:

Make k copies of sign bit:

$$X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0$$

k copies of MSB
Sign Extension Example

```c
short int x = 12345;
int   ix = (int) x;
short int y = -12345;
int   iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>30 39</td>
<td>00110000 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>12345</td>
<td>00 00 30 39</td>
<td>00000000 00000000 00110000 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>CF C7</td>
<td>11001111 11000111</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>FF FF CF C7</td>
<td>11111111 11111111 11001111 11000111</td>
</tr>
</tbody>
</table>

Converting from smaller to larger integer data type

C automatically performs sign extension