CSE351: Section 3

Number Representations and x86 ISA

October 13, 2011
Review: Representing Integers

- Signed and unsigned values
 - Representing unsigned?
 - Representing signed?

- What is the two's complement representation?
 - Flip the bits and add 1
 - Ex: 4 is 0100, -4 is 1100:
 - Flip the bits: 1011
 - Add 1: 1100
Review: Representing Integers

- Why Two's Compliment?
Review: Representing Integers

• Why Two's Compliment?
 • One value for 0 (zero)
 – Sign/magnitude has 0 and -0; leads to a lot of special cases
 • Works with existing adders
 – We don't need special signed/unsigned machinery
Review: Representing Floating-Point Values

- **Numerical Form:**
 - \((-1)^s \times M \times 2^E\)
 - Sign bit \(s\) determines whether number is positive or negative
 - Mantissa \(M\) normally a fractional value between \([1.0, 2.0)\)
 - Exponent \(E\) weights value by power of two

- **Encoding:**
 - MSB \(s\) is sign bit \(s\)
 - \(\text{frac}\) field encodes \(M\) (but is not exactly \(M\))
 - \(\text{exp}\) field encodes \(E\) (but is not exactly \(E\))
Review: Representing Floating-Point Values

- Numerical Form: \((-1)^s \times M \times 2^E\)

- Encoding:
 - MSB \(s\) is sign bit \(s\)
 - \(\text{frac}\) field encodes \(M\) (but is not exactly \(M\))
 - When \(M\) is represented as \(1.xxxxxxxxx\) in binary, \(M\) contains \(xxxxxxxx\)
 - \(\text{exp}\) field encodes \(E\) (but is not exactly \(E\))
 - \(\text{exp} = E + \text{Bias}\)
 - \(\text{Bias} = 2^{\lfloor \text{exp} \rfloor - 1} - 1\) (e.g., 127 for 8 bit \(\text{exp}\))
Review: Normalized Floating-Point Example

- How is float 12345.0 represented?
- Value:
 - \(12345.0_{10} = 11000000111001_2\)
 - \(= 1.1000000111001_2 \times 2^{13}\)
Review: Normalized Floating-Point Example

- How is float 12345.0 represented?
- Value:
 - \(12345.0_{10} = 11000000111001_2 \)
 - \(= 1.1000000111001_2 \times 2^{13} \)
- Mantissa:
 - \(M = 1.1000000111001_2 \)
 - \(\text{frac} = 10000001110010000000000000_2 \) (Need to extend to fill all 23 bits)
How is float 12345.0 represented?

Value:

- $12345.0_{10} = 11000000111001_2$
 $= 1.1000000111001_2 \times 2^{13}$

Mantissa:

- $M = 1.1000000111001_2$
 $frac = \overset{23}{\underset{10}{100000011100100000000000}}_2$ (Need to extend to fill all 23 bits)

Exponent:

- $E = 13$
 $Bias = 2^7 - 1 = 127$
 $exp = 140_{10} = 10001100_2$
How is float 12345.0 represented?

Value:

- \(12345.0_{10} = 11000000111001_2\)
 \(= 1.1000000111001_2 \times 2^{13}\)

Mantissa:

- \(M = 1.1000000111001_2\)
- \(frac = 10000001110010000000000_2\) (Need to extend to fill all 23 bits)

Exponent:

- \(E = 13\)
- \(Bias = 2^7 - 1 = 127\)
- \(exp = 140_{10} = 10001100_2\)
Normalization and Special Values

- “Normalized” means mantissa is of form 1.xxxxxxxxxx
 - Leading 1 is implied, don't need to store it
- Special values:
 - 000...00 represents zero
 - exp = 111...11, frac = 000...00 represents INFINITY
 - Sign bit determines if it is +INF or -INF
 - E.g., 10.0 / 0.0 = INF
 - exp = 111...11, frac != 000...00 represents NaN
 - E.g., 0 * INF = NaN
Properties of Floating-Point Values

- Not really associative or distributive. Why?
 - Let $a = 1.52342$, $b = 6.2342342$, $c = 2.2523555$
 - $(a + b) + c = 10.010009700000001$
 - $a + (b + c) = 10.010009699999999$
 - $a \times (b + c) = 12.928640480774000$
 - $a \times b + a \times c = 12.928640480774002$

- Infinities and NaNs have issues
 - Additive inverses?

- Overflow and infinity
 - Only have so many bits of exponent; if it overflows, we get INF
Floating-Point Values and the Programmer

#include <stdio.h>

int main(int argc, char* argv[]) {

 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for (i=0; i<10; i++) {
 f2 += 1.0/10.0;
 }

 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 == f2? %s\n", f1 == f2 ? "yes" : "no");
 printf("f1 = %10.8f\n", f1);
 printf("f2 = %10.8f\n\n", f2);

 f1 = 1E30;
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

 return 0;
}
Floating-Point Values and the Programmer

```c
#include <stdio.h>

int main(int argc, char* argv[]) {
    float f1 = 1.0;
    float f2 = 0.0;
    int i;
    for (i=0; i<10; i++) {
        f2 += 1.0/10.0;
    }
    printf("0x%08x  0x%08x\n", *(int*)&f1, *(int*)&f2);
    printf("f1 == f2? %s\n", f1 == f2 ? "yes" : "no");
    printf("f1 = %10.8f\n", f1);
    printf("f2 = %10.8f\n\n", f2);
    f1 = 1E30;
    f2 = 1E-30;
    float f3 = f1 + f2;
    printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
    return 0;
}
```

$./a.out
0x3f800000 0x3f800001
f1 == f2? no
f1 = 1.000000000
f2 = 1.000000119
f1 == f3? yes
Memory Referencing Bug

double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824;
 return d[0];
}
Memory Referencing Bug

double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824;
 return d[0];
}

• What is the result of... ?
 • fun(0)
 • fun(1)
 • fun(2)
 • fun(3)
 • fun(4)
Memory Referencing Bug

double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824;
 return d[0];
}

• What is the result of... ?

• fun(0) → 3.14
• fun(1) → 3.14
• fun(2) → 3.1399998664856
• fun(3) → 2.00000061035156
• fun(4) → 3.14, then a segfault
Floating-Point Summary

- Floats have a finite number of bits
 - Overflow just like ints
- Some simple fractions have no exact representation
 - E.g. 0.1
- Calculations can lose precision, e.g., due to rounding
- Mathematically equivalent expressions can return different results
x86 ISA, C, and Assembly
The General ISA

Processor
- PC
- Registers

Memory
- Instructions
- Data

Communication
General ISA Design Questions

- What the programmer “sees”
- Defines HW/SW interface
 - What are the instructions?
 - What do they do?
 - How are they encoded?
 - How many registers? How wide are the registers?
 - How do you address memory?
- The ISA is an abstraction
 - Many different implementations by different manufacturers
Example: x86 and x86_64

- Complex Instruction Set Computers (CISC)
 - Some instructions do complex operations (e.g., copy strings)
 - Instructions are defined in detail in the manuals
- Registers are 32-bit for x86 and 64-bit for x86_64
- x86 has 8 registers for general use; x86_64 has 16
 - Convention dictates how these registers are used
- ISA also determines function calling conventions
 - x86 mostly uses stack to pass arguments to functions
 - X86_64 passes first six arguments directly in CPU registers
x86 Registers

<table>
<thead>
<tr>
<th>%eax</th>
<th>%ax</th>
<th>%ah</th>
<th>%al</th>
</tr>
</thead>
<tbody>
<tr>
<td>%ebx</td>
<td>%bx</td>
<td>%bh</td>
<td>%bl</td>
</tr>
<tr>
<td>%ecx</td>
<td>%cx</td>
<td>%ch</td>
<td>%cl</td>
</tr>
<tr>
<td>%edx</td>
<td>%dx</td>
<td>%dh</td>
<td>%dl</td>
</tr>
<tr>
<td>%esi</td>
<td>%si</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%edi</td>
<td>%di</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%ebp</td>
<td>%bp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%esp</td>
<td>%sp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- There are also other registers that can't be accessed directly: %eip, %eflags, %cs, %ds, etc.
x86_64 Registers

- More registers, different conventions
 - Some function arguments are now passed in %rdi, %rsi, %rdx, %rcx, %r8 and %r9
- There are also other registers that can't be accessed directly: %eip, %eflags, %cs, %ds, etc.
X86 Basics - Instructions

- **Arithmetic**
 - `add, sub, mul, idiv`

- **Logical / Bitwise**
 - `and, or, xor, neg, sal/shl, sar/shr`

- **Control**
 - `jmp, je, jne, jg, jl, jle, jge`
 - Use after test or cmp instruction
 - `test` - bitwise AND which sets flags
 - `cmp` - subtraction which sets flags
 - `ret` - used to return from a function

- **Other**
 - Stack insns: `push, pop`
 - Data manipulating: `mov, enter, leave`
X86 Basics - Data Sizes

• Instructions take a data size specifier as their last character
 • L - operate on 4 bytes
 - Ex: addl, pushl, movl, cmpl
 • B - operate on least significant byte
 - Ex: movb, cmpb, testb

• Need to be combined with appropriately named operands!
 • Ex: addl %edx, %eax → valid!
 cmpb %eax, %cl → invalid!
C-to-Assembly Example

HLL Source Code → Compiling → Assembly Code → Assembling/Linking → Machine Code
Compiling

- Turning high level code (e.g., C) to intermediate assembly for the target ISA
- Must compile the HL code multiple times if targeting multiple ISAs
- Can produce with: `gcc foo.c -S -o foo.s`

```c
int sum(int x, int y)
{
    //compute sum
    int res =
        x + y;
    return res;
}
```

```assembly
<sum>:
push %rbp
mov %rsp,%rbp
mov %edi, 0x4(%rbp)
mov %esi, 0x8(%rbp)
mov 0x8(%rbp), %eax
mov 0x4(%rbp), %edx
lea (%rdx,%rax,1), %eax
leaveq
retq
```
Assembling/Linking

- Transform human-readable assembly to machine-readable binary
- Can produce directly with gcc, or with as
- Linking additionally includes code from libraries
 - printf, strlen, etc.

```assembly
code here
```

Assembling/Linking:
- Push %rbp
- Move %rsp, %rbp
- Move %edi, -0x4(%rbp)
- Move %esi, -0x8(%rbp)
- Move -0x8(%rbp), %eax
- Move -0x4(%rbp), %edx
- Leave (%rdx, %rax, 1), %eax
- Leaveq
- Retq

Machine code:
- 0x55
- 0x48 0x89 0xe5
- 0x89 0x7d 0xfc
- 0x89 0x75 0xf8
- 0x8b 0x45 0xf8
- 0x8b 0x55 0xfc
- 0x8d 0x04 0x02
- 0xc9
- 0xc3
Going from Binary to Assembly

- Sometimes you want to go the other way
 - E.g., converting an executable binary back to assembly
 - Usually hard/impossible to go back to HLL
- Useful for debugging, reverse engineering, and **Lab 2**
- Two possible ways to do this:
 - Use GDB and the `disas' command
 - `$ gdb foo
 > disas main`
 - Objdump program from the command line
 - `$ objdump -D foo`
- See man pages for specifics
C-to-Assembly Example

HLL Source Code

Compiling

Assembly Code

Assembling/Linking

Machine Code

int sum(int x, int y)
{
 //compute sum
 int res = x + y;
 return res;
}

C-to-Assembly Example

HLL Source Code

Compiling

Assembly Code

Assembling/Linking

Machine Code

int sum(int x, int y)
{
 //compute sum
 int res = x + y;
 return res;
}