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Misc. Tidbits

● Welcome to 351! It'll be fun...
● Sections once a week

Alternatively led by Nick and Aryan

● Section should be interactive

Please ask questions

● Other avenues for help

Discussion boards, direct email, office hours

With 4 TAs, shouldn't be difficult to find help



  

Announcements

● Subscribed to the mailing list?
● Should've received a message from Luis yesterday

● Small change to HW0
● Originally we said to increase array size from 

2048x2048 to 8192x8192.
● Instead, only go to 4096x4096
● Attu doesn't have enough memory for Java versions



  

Who am I?

● 3rd year grad student working with Luis
● I did my undergrad here as well (7 th year overall)
● Broadly interested in operating systems and 

computer architecture
● Research focused primarily on:

Software reliability/debugging via determinism

Power/energy efficiency



  

Who am I really?

● A climber!
● 7 years on technical rock, last two on glaciated 

terrain
● Major peaks this summer:

Rainier, Baker, Olympus, Daniel, Colchuck, Ingalls, 
Unicorn, SEWS and more!

● Always looking for new partners :)



  

Who are you?

● Ever used Linux?
● Ever programmed in C?
● Ever debugged with GDB?
● Ever written in ASM?
● Any interesting summer stories?



  

Today

● Pleasantries
● Overview of C

● Mainly discuss a few differences from Java
● Not a real tutorial; just not enough time
● See the C book for a good introduction

● Overview of debugging C programs
● Introduction to pointers in C
● Touch on HW0?



  

Intro to C: Why C?

● It's awesome and ubiquitous

2nd most popular language today - TIOBE.com

● Modern languages are still implemented in C

Java, Python, Perl, PHP, Ruby

● So are operating systems
● Affords great performance and more control

“With great freedom comes great responsibility”

http://www.tiobe.com/


  

Intro to C: Hello World in Java

/* HelloWorld.java */

class HelloWorld {
public static void

main(String[] args) {
System.out.println("Hello, “ +

“world!");
}

}



  

Intro to C: Hello World

/* hello.c */

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("Hello, world!\n");

return 0; 

}



  

Intro to C: Hello World

/* hello.c */

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("Hello, world!\n");

return 0; 

}

Preamble of file includes 
headers, provides function 
declarations, useful comments, 
etc.

Common headers, see refs:
stdio.h, stdlib.h, 
stdint.h, unistd.h, 
string.h



  

Intro to C: Hello World

/* hello.c */

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("Hello, world!\n");

return 0; 

}

main() is the 
program's entry point, 
just like Java, but is not 
contained in a class



  

Intro to C: Compiling

● Previous program in hello.c
● To compile and run:

$ gcc hello.c o hello Wall

$ ./hello

Hello, world!

● Options:

o – What to name the output file

Wall – Print all warnings



  

Intro to C: C and Java

● C is a weakly typed language
● int, float, long int, double, etc.

● Syntax similar to Java
● if/then/else, do/while, for, 
switch/case

● printf/scanf for console I/O

● open/read/write/close for file I/O



  

Intro to C: Differences from Java

● No classes! No objects!

Class-like things though; check out structs

Data only, no methods

● No garbage collection! Not managed!

Must remember to allocate/deallocate on your own

No built-in bounds checking

● No exceptions!

Need to do own error checking / handling

● No virtual machine!

Must recompile the code for different architectures

Compiles to “real” op codes (as opposed to virtual)



  

Intro to C: References

● The C Programming Language

Written by the authors of the language

Concise and precise

Excellent collection of practice problems

● Linux man pages

Useful for looking up how to use a particular 
function, e.g.:

$ man printf



  

Intro to C: Debugging

● You write a program, try to run it, and it 
crashes. What now?



  

Intro to C: Debugging

● One option: “printf debugging”
● Add print statements to the code to see where/why 

it crashes

● Another idea: run it through a debugger
● Monitor accesses to variables, see where the 

program crashes, verify loop invariants, etc.

● Depends on the situation; one may be easier 
than the other



  

Intro to C: printf Debugging

● printf allows you to print formatted strings

● Arguments include a format string, and data to display
● Format string is a literal string, containing special 

placeholders indicating how to display the data
● Ex:

● printf(“Sum: %d + %d = %d\n”, 1, 2, 1+2)

● %d displays an integer
● Produces “Sum: 1 + 2 = 3”

● See “man printf” or the C book for more



  

Intro to C: Debugging with GDB

/* Buggy program */

#include <stdio.h>

int main(int argc, char* argv[]) {

int a = 5, *b = &a;

printf(“%d %d\n”, a, *b);

a ^= a; b = *b ^ a;

printf(“%d %d\n”, a, *b);

return 0;

}



  

Intro to C: Debugging with GDB
● Use ggdb to compile w/ debugging symbols

$ gcc o foo Wall ggdb foo.c

● Invoke with gdb:

$ gdb ./foo

● Important commands:
● run
● break <line# / symbol>
● step
● continue
● info <locals / frame / register>
● print, x
● backtrace
● help



  

Intro to C: Debugging with GDB

/* Buggy program */

#include <stdio.h>

int main(int argc, char* argv[]) {

int a = 5, *b = &a;

printf(“%d %d\n”, a, *b);

a ^= a; b = *b ^ a;

printf(“%d %d\n”, a, *b);

return 0;

}



  

Intro to C: Taste of Pointers

● Variables in C have types
● int, long, double, float, char, etc.

● A pointer is just another type
● Pointers store addresses of other variables
● int is an integer, but int* is a pointer to an int

● Same for float and float*, char and char*, 
etc.

● “NULL pointers” are pointers containing 0 (zero)



  

Intro to C: Taste of Pointers

● & is the address-of operator
● Returns the address of a variable

● * is the value-of operator
● Retrieves the value stored at the address in a pointer; 

“dereferencing”; NULL pointers cannot be dereferenced

● Ex:
● int a = 5; int *ap;
● ap = &a; *ap = 10; 
● printf(“%d %d\n”, a, *ap);



  

Intro to C: Debugging with GDB

/* Buggy program */

#include <stdio.h>

int main(int argc, char* argv[]) {

int a = 5, *b = &a;

printf(“%d %d\n”, a, *b);

a ^= a; b = *b ^ a;

printf(“%d %d\n”, a, *b);

return 0;

}



  

Intro to C: Debugging with GDB

/* Buggy program */

#include <stdio.h>

int main(int argc, char* argv[]) {

int a = 5, *b = &a;

printf(“%d %d\n”, a, *b);

a ^= a; b = *b ^ a;

printf(“%d %d\n”, a, *b);

return 0;

}

/* b becomes 
NULL, so 
dereferencing 
causes a crash 
*/



  

Intro to C: Taste of Pointers

● Why are pointers useful?



  

Intro to C: Taste of Pointers

● Why are pointers useful?
● Some ideas:

● Linked data structures
● Passing by reference
● Avoid copying large blocks of data
● Any others?

● Don't need to know this stuff now; just wanted 
to whet your appetite!



  

HW0

● Has anyone started yet?
● Any questions?



  

Thanks!

Questions:
cse351-tas@cs.washington.edu

mailto:cse351-tas@cs.washington.edu
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