

CSE 351
Section 1: Intro to C

Nick Hunt
September 29, 2011

Misc. Tidbits

● Welcome to 351! It'll be fun...
● Sections once a week

Alternatively led by Nick and Aryan

● Section should be interactive

Please ask questions

● Other avenues for help

Discussion boards, direct email, office hours

With 4 TAs, shouldn't be difficult to find help

Announcements

● Subscribed to the mailing list?
● Should've received a message from Luis yesterday

● Small change to HW0
● Originally we said to increase array size from

2048x2048 to 8192x8192.
● Instead, only go to 4096x4096
● Attu doesn't have enough memory for Java versions

Who am I?

● 3rd year grad student working with Luis
● I did my undergrad here as well (7 th year overall)
● Broadly interested in operating systems and

computer architecture
● Research focused primarily on:

Software reliability/debugging via determinism

Power/energy efficiency

Who am I really?

● A climber!
● 7 years on technical rock, last two on glaciated

terrain
● Major peaks this summer:

Rainier, Baker, Olympus, Daniel, Colchuck, Ingalls,
Unicorn, SEWS and more!

● Always looking for new partners :)

Who are you?

● Ever used Linux?
● Ever programmed in C?
● Ever debugged with GDB?
● Ever written in ASM?
● Any interesting summer stories?

Today

● Pleasantries
● Overview of C

● Mainly discuss a few differences from Java
● Not a real tutorial; just not enough time
● See the C book for a good introduction

● Overview of debugging C programs
● Introduction to pointers in C
● Touch on HW0?

Intro to C: Why C?

● It's awesome and ubiquitous

2nd most popular language today - TIOBE.com

● Modern languages are still implemented in C

Java, Python, Perl, PHP, Ruby

● So are operating systems
● Affords great performance and more control

“With great freedom comes great responsibility”

http://www.tiobe.com/

Intro to C: Hello World in Java

/* HelloWorld.java */

class HelloWorld {
public static void

main(String[] args) {
System.out.println("Hello, “ +

“world!");
}

}

Intro to C: Hello World

/* hello.c */

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("Hello, world!\n");

return 0;

}

Intro to C: Hello World

/* hello.c */

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("Hello, world!\n");

return 0;

}

Preamble of file includes
headers, provides function
declarations, useful comments,
etc.

Common headers, see refs:
stdio.h, stdlib.h,
stdint.h, unistd.h,
string.h

Intro to C: Hello World

/* hello.c */

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("Hello, world!\n");

return 0;

}

main() is the
program's entry point,
just like Java, but is not
contained in a class

Intro to C: Compiling

● Previous program in hello.c
● To compile and run:

$ gcc hello.c o hello Wall

$./hello

Hello, world!

● Options:

o – What to name the output file

Wall – Print all warnings

Intro to C: C and Java

● C is a weakly typed language
● int, float, long int, double, etc.

● Syntax similar to Java
● if/then/else, do/while, for,
switch/case

● printf/scanf for console I/O

● open/read/write/close for file I/O

Intro to C: Differences from Java

● No classes! No objects!

Class-like things though; check out structs

Data only, no methods

● No garbage collection! Not managed!

Must remember to allocate/deallocate on your own

No built-in bounds checking

● No exceptions!

Need to do own error checking / handling

● No virtual machine!

Must recompile the code for different architectures

Compiles to “real” op codes (as opposed to virtual)

Intro to C: References

● The C Programming Language

Written by the authors of the language

Concise and precise

Excellent collection of practice problems

● Linux man pages

Useful for looking up how to use a particular
function, e.g.:

$ man printf

Intro to C: Debugging

● You write a program, try to run it, and it
crashes. What now?

Intro to C: Debugging

● One option: “printf debugging”
● Add print statements to the code to see where/why

it crashes

● Another idea: run it through a debugger
● Monitor accesses to variables, see where the

program crashes, verify loop invariants, etc.

● Depends on the situation; one may be easier
than the other

Intro to C: printf Debugging

● printf allows you to print formatted strings

● Arguments include a format string, and data to display
● Format string is a literal string, containing special

placeholders indicating how to display the data
● Ex:

● printf(“Sum: %d + %d = %d\n”, 1, 2, 1+2)

● %d displays an integer
● Produces “Sum: 1 + 2 = 3”

● See “man printf” or the C book for more

Intro to C: Debugging with GDB

/* Buggy program */

#include <stdio.h>

int main(int argc, char* argv[]) {

int a = 5, *b = &a;

printf(“%d %d\n”, a, *b);

a ^= a; b = *b ^ a;

printf(“%d %d\n”, a, *b);

return 0;

}

Intro to C: Debugging with GDB
● Use ggdb to compile w/ debugging symbols

$ gcc o foo Wall ggdb foo.c

● Invoke with gdb:

$ gdb ./foo

● Important commands:
● run
● break <line# / symbol>
● step
● continue
● info <locals / frame / register>
● print, x
● backtrace
● help

Intro to C: Debugging with GDB

/* Buggy program */

#include <stdio.h>

int main(int argc, char* argv[]) {

int a = 5, *b = &a;

printf(“%d %d\n”, a, *b);

a ^= a; b = *b ^ a;

printf(“%d %d\n”, a, *b);

return 0;

}

Intro to C: Taste of Pointers

● Variables in C have types
● int, long, double, float, char, etc.

● A pointer is just another type
● Pointers store addresses of other variables
● int is an integer, but int* is a pointer to an int

● Same for float and float*, char and char*,
etc.

● “NULL pointers” are pointers containing 0 (zero)

Intro to C: Taste of Pointers

● & is the address-of operator
● Returns the address of a variable

● * is the value-of operator
● Retrieves the value stored at the address in a pointer;

“dereferencing”; NULL pointers cannot be dereferenced

● Ex:
● int a = 5; int *ap;
● ap = &a; *ap = 10;
● printf(“%d %d\n”, a, *ap);

Intro to C: Debugging with GDB

/* Buggy program */

#include <stdio.h>

int main(int argc, char* argv[]) {

int a = 5, *b = &a;

printf(“%d %d\n”, a, *b);

a ^= a; b = *b ^ a;

printf(“%d %d\n”, a, *b);

return 0;

}

Intro to C: Debugging with GDB

/* Buggy program */

#include <stdio.h>

int main(int argc, char* argv[]) {

int a = 5, *b = &a;

printf(“%d %d\n”, a, *b);

a ^= a; b = *b ^ a;

printf(“%d %d\n”, a, *b);

return 0;

}

/* b becomes
NULL, so
dereferencing
causes a crash
*/

Intro to C: Taste of Pointers

● Why are pointers useful?

Intro to C: Taste of Pointers

● Why are pointers useful?
● Some ideas:

● Linked data structures
● Passing by reference
● Avoid copying large blocks of data
● Any others?

● Don't need to know this stuff now; just wanted
to whet your appetite!

HW0

● Has anyone started yet?
● Any questions?

Thanks!

Questions:
cse351-tas@cs.washington.edu

mailto:cse351-tas@cs.washington.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

