
CSE 351 –Winter 2011
Midterm Key

NOTE: These answers are much longer winded than was required for full credit.

1. [4 points]
Complete the memory layout diagram below, then for each section of memory that you
have added state briefly what it is used for. (I have started the diagram by indicating that the
program's machine instructions are loaded starting at location 0.)

Instructions

Literals – used to hold immutable (unmodifiable) data, such as literal strings.
Static Data – holds (mutable) static variables, e.g., globals.
Heap – holds dynamically allocated (new'ed) variables.
Stack – holds procedure call frames / activation records: saved registers, arguments,
automatic (local) variables, and other temporary space (whose lifetime matches that of the
procedure invocation).

2. [4 points]
The following C code prints 20 20. Why?

int* foo() {
int fooResult = 10;
return &fooResult; // return a pointer to fooResult

}
int* bar() {

int barResult = 20;
return &barResult; // return a pointer to barResult

}
int main(int argc, char* argv[]) {

int* fResult = foo();
int* bResult = bar();
printf("%d %d\n", *fResult, *bResult); // %d prints an int
return 0;

}

When foo executes, fooResult is allocated on the stack, and so a pointer to a stack
location is returned. When foo returns, its frame is popped off the stack. When bar
executes, it allocates a frame, using the same stack memory foo just used. barResult
is allocated at the same address fooResult had been allocated at, so fResult and
bResult (in main) contain the same address. The last value written at that address
before the printf call was 20, so 20 is printed twice.

[Note: it is ALWAYS a serious error to return a pointer to stack allocated space. gcc

Literals
Static
Data

Heap Stack

prints a warning if you try to compile this code.]

3. [3 points]
Fill in the condition below so that the statement prints yes if the integer variable sum is
divisible by 4 and prints nothing otherwise. You are not allowed to use the division (/) or
remainder (%) operators.

 if (!(sum & 0x3)) printf(“yes”);

sum is a multiple of four if the lower order two bits are zero (just like a decimal number is a
multiple of 100 if the lower order two digits are 0).

4. [3+3 = 6 points]
Suppose the following C code is compiled into y86 instructions:

int foo() {
int value[100];
… <code that operates on all elements of value> …

}

(A) Briefly explain why the most current value of value[20]will sometimes be in a register
and sometimes in memory (as this program executes).

To operate on the values of variables, they must be in registers. There are too many
variables to all fit in registers, though, so the code from time to time has to move a variable's
value from memory into a register, work on it, and write it back to memory.

(B) Give (as assembler) a y86 instruction that copies value[20] from memory into register
3, assuming that foo() saves all callee saved registers.

value is a local variable, so it's addressed using the frame pointer register (%ebp). Moving
towards lower addresses from where the fp register points, there are 3 saved registers,
followed by the value array, laid out so that value[0] is at the lowest address. The
displacement in words is therefore -3 (the saved registers) + -80 (value[20], value[21], …,
value[99]). The displacement in bytes is therefore -83*4 = -332

mrmovl -332(%ebp), r3

5. [3 points]
In C, type char is a signed, 8-bit integer. With that in mind, what does this output?

char a = 100;
char b= 30;

 char c= a + b;
printf(“%d\n”, c); // The %d means “print as a decimal integer”

The maximum signed 8-bit value is 011111112 = 1 + 2 + 4 + 8 + 16 + 32 + 64 = 127, so
this sum overflows. On overflow, we wrap to the most negative value, -128 and the count up

from there,, so 127+3 results in -126.

6. [2 + 2 = 4 points]
(A) IEEE 754 is a standard for floating point that specifies both the bit-level representation of
floats and the results of operations on them. Why is it useful to have a standard for this? For
instance, what would likely “go wrong” if there were no standard?

Without a standard, different processor manufactures could (and did) use different floating
point representations, and dealt with roundoff differently. That meant that a program
compiled and run on one processor might easily get different results if compiled and run on a
different processor. (So, the key idea is portability of code across processors.)

Note: Let's consider processors not adhering to a standard. Two programs compiled for the
same processor are extremely likely to use the “native floating point format” (the one that
processor's hardware uses), and so can interoperate. Code running on one processor
communicating over a network with code running on a different processor type must be very
concerned about representations of all data – for instance, endianness will affect integers,
even if both processors use 2's-complement (which they will). Translation between distinct
data representations will necessarily be addressed (although it might not be possible to
represent all values of one processor on the other, due to distinct choices for the number of
mantissa bits, for instance).

(B) Why is it most likely a mistake to compare two floating point variables for equality?

Float point operations can (and commonly do) involve roundoff errors – imprecision due to
the finite number of bits available to represent values. Therefore, two computations that
mathematically should result in the same value may result in slightly different values when
done using a finite precision arithmetic (i.e., floating point).

7. [4 points]
Suppose we want to include the notion of “default arguments” in C, as illustrated by the
following code. This line declares a function that takes four arguments, two of which have
defaults:
 int mySub(int arg1, int arg2, int arg3=0, int arg4=7);
Here are some invocations of that function:

rval = mySub(7, 12, 4, 8); // legal, with the usual meaning
rval = mySub(7, 12, 4); // legal – arg4 = 7
rval = mySub(7, 12); // legal – arg3 = 0, arg4 = 7

Does the existing gcc/x86 procedure call convention have to be modified if default arguments
are allowed? If so, briefly explain why. If not, briefly explain why not.

This is purely a compile time issue, and so no change to the procedure call convention is
required. As part of normal type checking, the compiler must have access to the type
signature of mySub (which includes the default argument information) while compiling any
call to it. It therefore can recognize that the argument list given in a call is shorter than the 4
arguments required. In those cases, it simply re-writes the call, by supplying default values
for the missing arguments, and then compiles code for the call as always.

For instance, the compiler would first replace mySub(7,12) with mySub(7,12,0,7) and then
compile the latter.

8. [4 + 4 = 8 points]
Imagine a processor architecture “just like” y86 except that there are 32 general purpose
registers, rather than just 8.

(A) Give a specific, convincing argument for why the processor with 32 registers might
execute C programs faster than the processor with 8 registers.

If code uses more variables than there are available registers, values for those variables
must be moved between memory and registers as the code runs. Those memory operations
are expensive. Having more registers means that more variable values can be kept in them,
(most likely) reducing the number of memory reads/writes required by the compiled code.

(B) Give a specific, convincing argument for why the processor with 32 registers might
execute C programs slower than the processor with 8 registers.

There are three answers. Only the first two come from this class, but the third was given
often enough that I assume it has been discussed in some non-prerequisite class (370?):

(1) Instructions require 5 bits to name a register,meaning existing y86 machine instructions
have to be made longer than they are when there are only 8 registers. Longer instructions
means more memory has to be moved just to fetch the instruction stream, leading to slower
execution.

(2) The procedure call convention has caller-saved and callee-saved registers. Inevitably,
some callers/callees will save registers that didn't need saving, because the compiler doesn't
have enough information to minimize register saving for every call. The more registers there
are, the more that may be needlessly saved, and so the slower the execution in some cases
that perform a lot of procedure calls.

(3) As the register file (the bank of registers) gets larger, access time to retrieve the value of
a single register gets longer. Eventually, the overhead of longer retrieval time on every
register fetch outweighs the benefits the compiler can obtain by having more registers in
which to stuff currently used variable values.

9. [4 points]
The declaration of myGlobal in the following code is not executable, while the declaration
of myLocal is executable – that is, the compiler does not emit any instructions to be
executed at run time for the former, while it does for the latter. Briefly explain why (for
both cases), and how myGlobal is initialized if there are no run time instructions for it.

 int myGlobal = 10 + 7;

 int mySub() {
 int myLocal = 0;
 …

 }

myGlobal is a static variable, meaning a decision about what memory location it will occupy
is made before execution. The compiler can (and does) evaluate the expression 10+7 at
compile time. When the .exe file for the code is created, it contains an indication that the
memory location for myGlobal should be initialized to 17 on load. (This is exactly like the
data (i.e., the array + pointer) you created in your “code file” in HW1.) So, no instruction
needs to be emitted to initialize myGlobal, as it is initialized by the process of loading the
program.

In contrast, myLocal is allocated on the stack each time mySub is invoked. It's impossible to
know at compile time what those locations will be, and so impossible to find a way to
initialize them using the loader. Instead, they must be initialized once their location is know,
i.e., at run time. That requires that an instruction be emitted to perform that initialization.

10. [3 points + 2 optional extra-credit points]
Consider the following (legal) C code:

typedef struct {
int partNumber;
int numInStock;

} PartStruct;

PartStruct findPart(int partNum); // method returning a struct

int main(int argc, char* argv[]) {
PartStruct myPart;
…
myPart = findPart(302845);
…

}

(A) What is there about the statement calling findPart() that presents a problem for the
compiler, assuming that (a) it uses the gcc/x86 subroutine call convention, and (b) all returns
are return-by-value?

The procedure call convention (as we've talked about it) passes back the return value using a
register. findPart needs to return a struct, and the struct is larger than a register can hold.
(So, we can't use the convention that the caller finds the return value in a register when the
call returns.)

(B) OPTIONAL EXTRA CREDIT (2 points)
Suggest how the compiler can manage to compile code like this, keeping in mind that
main() and findPart() may be located in different files.

The compiler is aware, both when compiling the caller and the callee, that the callee is
returning a struct. It therefore compiles the caller to allocate stack space to hold the return
value of the call, just before making the call. When compiling the callee, it knows that the
caller has allocated space just before the call, and so the stack memory just after the saved
return address is that space. Therefore, the compiler generates instructions in the callee that
put the return value in that stack space (rather than a register) and generates instructions in
the caller that look for the return value there (rather than in a register).

Note that the caller must allocate this space; the callee cannot. The reason is that stack
space used to hold the result, if allocated by the callee, would be part of the callee's frame,
which is popped when the callee returns.

(There were many answers that suggested return-by-reference, but didn't address the issue of
how/who allocated the space that was being referenced (which is critical). A couple people
suggested return-by-reference to heap allocated space; that was graded as correct, since it
could be made to work, even though it is much, much slower than the method outlined
above.)

	CSE 351 –Winter 2011
Midterm Key

NOTE: These answers are much longer winded than was required for full credit.

