University of Washington

Today

m Moving on to... Memory allocation

VM Simplifies Memory Layout

Memory
) invisible to
Kernel virtual memory
. 1 0xc0000000 user code
| Llnkmg User stack
® Each program has similar virtual laiEaie af FLEnE] «—%esp
address space (stack
= Code, stack, and shared libraries 1 pointer)
always start at the same address Memory-mapped region for
shared libraries
0x40000000
T <— brk
Run-time heap
(created bymalloc)
\
Read/write segment Loaded
(.data, .bss) from
» the
Read-only segment executable
(.init, .text, .rodata) file
0x08048000 ’
Unused

0 2

University of Washington

Process Memory Image

1 memory protected

kernel virtual memory from user code

stack

4

v

sesp

What is the heap for?

How do we use it? |

run-time heap

uninitialized data (.bss)

initialized data (.data)

program text (.text)

University of Washington

Memory Allocation

m Dynamic memory allocation

= Size of data structures may only be known at run time

"= Need to allocate space on the heap

"= Need to de-allocate (free) unused memory so it can be re-allocated
m Implementation --- “Memory allocator”

= Implicit free lists

= Explicit free lists — subject of next programming assignment

= Segregated free lists

m Garbage collection
m Common memory-related bugs in C programs

University of Washington

Process Memory Image

1 memory protected

kernel virtual memory from user code

R stack

zesp— ‘

Allocators request
additional heap memory

from the kernel using the
sbrk () function: t

error = sbrk(amt_more) run-time heap (viamalloc)

the “brk” ptr

a

uninitialized data (.bss)

initialized data (.data)

program text (.text)

Dynamic Memory Allocation

m Memory allocator?

Applicati
= VM hardware and kernel allocate pages pprication

= Application objects are typically smaller Dynamic Memory Allocator

= Allocator manages objects within pages Heap Memory

m How should the application code allocate memory?

University of Washington

Dynamic Memory Allocation

m Memory allocator?

Applicati
= VM hardware and kernel allocate pages pprication

= Application objects are typically smaller Dynamic Memory Allocator

= Allocator manages objects within pages Heap Memory

m Explicit vs. Implicit Memory Allocator

= Explicit: application allocates and frees space
* InC: malloc () and free ()

= Implicit: application allocates, but does not free space
= |nJava, ML, Lisp: garbage collection

m Allocation
" A memory allocator doles out memory blocks to application

= A “block” is a contiguous range of bytes of the appropriate size
= What is appropriate size?

Malloc Package

m #include <stdlib.h>

m void *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
(typically) aligned to 8-byte boundary

» Ifsize == 0, returns NULL
= Unsuccessful: returns NULL (0) and sets errno (a global variable)

m /s this enough? That’s it? ©

Malloc Package

m #include <stdlib.h>

m void *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
(typically) aligned to 8-byte boundary

» Ifsize == 0, returns NULL
= Unsuccessful: returns NULL (0) and sets errno (a global variable)

m void free(void *p)
= Returns the block pointed at by p to the pool of available memory

= p must come from a previous call tomalloc or realloc

m anything else()? ©

Malloc Package

m #include <stdlib.h>

m void *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
(typically) aligned to 8-byte boundary

» Ifsize == 0, returns NULL
= Unsuccessful: returns NULL (0) and sets errno (a global variable)

m void free(void *p)
= Returns the block pointed at by p to the pool of available memory

= p must come from a previous call tomalloc or realloc
m void *realloc(void *p, size t size)
= Changes size of block p and returns pointer to new block

= Contents of new block unchanged up to min of old and new size
= Old block has been £ree'd (logically, if new !=old)

10

Malloc Example

void foo(int n, int m) {
int 1, *p;

/* allocate a block of n ints */

p = (int *)malloc(n * sizeof(int));

if (p == NULL)eH Why?
perror ("malloc") ;
exit (0) ;

}

for (i=0; i<n; i++) pl[i] = 1i;

/* add m bytes to end of p block */

if ((p = (int *)realloc(p, (n+m) * sizeof(int))) == NULL) {
perror ("realloc") ;
exit (0) ;

}

for (i=n; i < n+m; i++) p[i] = 1;
/* print new array */
for (i=0; i<n+m; i++)

printf ("$d\n", pl[i]);

free(p); /* return p to available memory pool */

11

University of Washington

Assumptions Made in This Lecture

m Memory is word addressed (each word can hold a pointer)
= block size is a multiple of words

\ Y J Q ,_I
Allocated block Free block
(4 words) (3 words) Free word

Allocated word

12

University of Washington

Allocation Example

pl = malloc(4)

p2 = malloc(5)

13

University of Washington

Allocation Example

pl = malloc(4)

p2 = malloc(5)

14

University of Washington

Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

15

University of Washington

Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

16

University of Washington

Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

17

University of Washington

Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

18

University of Washington

Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)

19

University of Washington

Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)

20

University of Washington

How are going to implement that?!?

m /deas?

21

Constraints

m Applications
= Canissue arbitrary sequence of malloc() and free() requests
= free() requests must be to a malloc()’d block

22

Constraints

m Applications
= Canissue arbitrary sequence of malloc() and free() requests
= free() requests must be to a malloc()’d block

m Allocators
® Can’t control number or size of allocated blocks

23

Constraints

m Applications
= Canissue arbitrary sequence of malloc() and free() requests
= free() requests must be to a malloc()’d block

m Allocators
= Can’t control number or size of allocated blocks
= Must respond immediately to malloc() requests
= j.e., can’t reorder or buffer requests

24

Constraints

m Applications
= Canissue arbitrary sequence of malloc() and free() requests
= free() requests must be to a malloc()’d block

m Allocators
= Can’t control number or size of allocated blocks
= Must respond immediately to malloc() requests
= j.e., can’t reorder or buffer requests
= Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory, why?

25

Constraints

m Applications
= Canissue arbitrary sequence of malloc() and free() requests
= free() requests must be to a malloc()’d block

m Allocators
= Can’t control number or size of allocated blocks
= Must respond immediately to malloc() requests
= j.e., can’t reorder or buffer requests
= Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory
= Must align blocks so they satisfy all alignment requirements
= 8 byte alignment for GNU malloc (1ibe malloc) on Linux boxes

26

Constraints

m Applications
= Canissue arbitrary sequence of malloc() and free() requests
= free() requests must be to a malloc()’d block

m Allocators
= Can’t control number or size of allocated blocks
= Must respond immediately to malloc() requests
= j.e., can’t reorder or buffer requests
= Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory
= Must align blocks so they satisfy all alignment requirements
= 8 byte alignment for GNU malloc (1ibe malloc) on Linux boxes
® Can manipulate and modify only free memory, why and what for?

27

Constraints

m Applications
= Canissue arbitrary sequence of malloc() and free() requests
= free() requests must be to a malloc()’d block

m Allocators
= Can’t control number or size of allocated blocks
= Must respond immediately to malloc() requests
= j.e., can’t reorder or buffer requests
= Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory
= Must align blocks so they satisfy all alignment requirements
= 8 byte alignment for GNU malloc (1ibe malloc) on Linux boxes
= Can manipulate and modify only free memory
= Can’t move the allocated blocks once they are malloc()’'d
= j.e., compaction is not allowed. Why not?

28

University of Washington

Performance Goal: Throughput

m Given some sequence of malloc and free requests:
Ry, R, ... R, ...,R

m Goals: maximize throughput and peak memory utilization
" These goals are often conflicting
= What’s throughput?

29

University of Washington

Performance Goal: Throughput

m Given some sequence of malloc and free requests:
Ry, R, ... R, ...,R

m Goals: maximize throughput and peak memory utilization
" These goals are often conflicting

m Throughput:
" Number of completed requests per unit time
= Example:
= 5,000 malloc () callsand 5,000 £ree () callsin 10 seconds
= Throughput is 1,000 operations/second
" Howtodomalloc () and free () in O(1)? What’s the problem?

30

University of Washington

Performance Goal: Peak Memory Utilization

m Given some sequence of malloc and free requests:
Ry, Ry, ... R, ..., R,

m Def: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

31

University of Washington

Performance Goal: Peak Memory Utilization

m Given some sequence of malloc and free requests:
Ry, Ry, ... R, ..., R,

m Def: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

m Def: Current heap size = H,
= Assume H, is monotonically nondecreasing
= Allocator can increase size of heap using sbrk ()

32

University of Washington

Performance Goal: Peak Memory Utilization

m Given some sequence of malloc and free requests:
Ry, Ry, ... R, ..., R,

m Def: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

m Def: Current heap size = H,
= Assume H, is monotonically nondecreasing
= Allocator can increase size of heap using sbrk ()

m Def: Peak memory utilization after k requests
" Uc=(max4 P;) / Hy
= Goal: maximize utilization for a seq of requests.
" /s this hard? Why? And what happens to throughput?

33

University of Washington

Fragmentation

m Poor memory utilization caused by fragmentation
= jnternal fragmentation
= external fragmentation

34

University of Washington

Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is smaller than

block size

Internal
fragmentation

m Caused by

block
A
o Y
r—— payload D

Internal
fragmentation

= overhead of maintaining heap data structures (inside block, outside payload)

= padding for alignment purposes

= explicit policy decisions

(e.g., to return a big block to satisfy a small request, why would anyone do

that? Crazy people.)

m Depends only on the pattern of previous requests
= thus, easy to measure

35

University of Washington

External Fragmentation

m Occurs when there is enough aggregate heap memory, but no
single free block is large enough

pl = malloc (4)

o
N
I

malloc (5)

p3 = malloc(6)

free (p2)

36

University of Washington

External Fragmentation

m Occurs when there is enough aggregate heap memory, but no
single free block is large enough

o
=
I

malloc (4)

o
N
I

malloc (5)

p3 = malloc(6)

free (p2)

p4 = malloc (6)

37

University of Washington

External Fragmentation

m Occurs when there is enough aggregate heap memory, but no
single free block is large enough

pl = malloc (4)

o
N
I

malloc (5)

p3 = malloc(6)

free (p2)

p4 = malloc(6) Oops! (what would happen now?)

38

University of Washington

External Fragmentation

m Occurs when there is enough aggregate heap memory, but no
single free block is large enough

malloc (4)

o
=
I

o
N
I

malloc (5)

p3 = malloc(6)

free (p2)

p4 = malloc(6) Oops! (what would happen now?)

m Depends on the pattern of future requests
" Thus, difficult to measure

39

University of Washington

Implementation Issues

m How to know how much memory is being £ree () 'd when
it is given only a pointer (and no length)?

m How to keep track of the free blocks?

m What to do with extra space when allocating a block that is
smaller than the free block it is placed in?

m How to pick a block to use for allocation—many might fit?

m How to reinsert a freed block into the heap?

40

University of Washington

Knowing How Much to Free

m Standard method
= Keep the length of a block in the word preceding the block.
= This word is often called the header field or header
= Requires an extra word for every allocated block

pO

pO = malloc(4) 5

I NV

block size data

free (p0)

41

University of Washington

Keeping Track of Free Blocks

m Method 1: Implicit list using length—links all blocks

m Method 2: Explicit list among the free blocks using pointers

/_\

5 4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers
within each free block, and the length used as a key

42

University of Washington

Implicit List

m For each block we need: length, is-allocated?
® Could store this information in two words: wasteful!

m Standard trick

= |f blocks are aligned, some low-order address bits are always O
" |nstead of storing an always-0 bit, use it as a allocated/free flag

" When reading size word, must mask out this bit

Format of
allocated and
free blocks

1 word
A
—
size a
payload
optional

padding

a = 1: allocated block
a = 0: free block

size: block size

payload: application data
(allocated blocks only)

43

Example

Sequence of blocks in heap: 2/0, 4/1, 8/0, 4/1

Start of heap

2/0 41

41

m 8-byte alighment
= May require initial unused word
= Causes some internal fragmentation

. 810

_

8 bytes = 2 word alignment

m One word (0/1) to mark end of list

m Here: block size in words for simplicity

University of Washington

Free word
Allocated word

Allocated word
unused

44

University of Washington

Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits: (Cost?)

p = start;
while ((p < end) && \\ not passed end
((*p & 1) || \\ already allocated
(*p <= len))) \\ too small
p=p+ (*p & -2); \\ goto next block (word addressed)

= Can take linear time in total number of blocks (allocated and free)
® |n practice it can cause “splinters” at beginning of list

m Next fit:
= Like first-fit, but search list starting where previous search finished
= Should often be faster than first-fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse

m Best fit:
= Search the list, choose the best free block: fits, with fewest bytes left over

= Keeps fragments small—usually helps fragmentation
= Will typically run slower than first-fit

45

University of Washington

Implicit List: Allocating in Free Block

m Allocating in a free block: splitting
= Since allocated space might be smaller than free space, we might want

to split the block

O~ N —

4 4 6 2
o]
addblock (p, 4)
4 4 4 2 2

void addblock (ptr p, int len) {

int newsize = ((len + 1) >> 1) << 1;

int oldsize = *p & -2;
*p = newsize | 1;
if (newsize < oldsize)

* (ptnewsize) = oldsize - newsize;

46

University of Washington

Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want
to split the block

O~ N —

4 4 6 2
1
p

addblock (p, 4)

void addblock (ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even

int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)
* (p+newsize) = oldsize - newsize; // set length in remaining

} // part of block

47

University of Washington

Implicit List: Freeing a Block

m Simplest implementation:
= Need only clear the “allocated” flag
void free block(ptr p) { *p = *p & -2 }
= But can lead to “false fragmentation”

o B 2 -

free (p)

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

48

University of Washington

Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free
" Coalescing with next block

4 4 4 2 2 _
t logically
free (p) ////—_\\\\///’—_\\\ii””—____z?x<:/,/,/"gone
4 4 6 2 2
void free block (ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) == 0)
*p = *p + *next; // add to this block if
} // not allocated

= But how do we coalesce with previous block?

49

University of Washington

Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
= |mportant and general technique!

Header > Size a
a = 1: allocated block
Format of a = 0: free block
allocated and payload and - _
padding size: total block size

free blocks

payload: application data
Boundary tag — e - (allocated blocks only)
(footer)

50

University of Washington

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4

allocated allocated free free

block being
freed

allocated free allocated free

51

University of Washington

Constant Time Coalescing

ml 1 ml 1 ml 1 ml 1
ml 1 ml 1 ml 1 ml 1
n 1 n 0 n 1 n+m?2 0
— —
n 1 n 0 n 1
m2 1 m2 1 m2 0
m2 1 m2 1 m2 0 n+m?2 0
ml 0 n+ml 0 ml 0 n+fml+m2 | 0
ml 0 ml 0
n 1 n 1
— —
n 1 n+ml 0 n 1
m2 1 m2 1 m2 0
m2 1 m2 1 m2 0 n+ml+m2 | 0

52

University of Washington

Implicit Lists: Summary

m Implementation: very simple

m Allocate cost:
" |inear time worst case

m Free cost:
® constant time worst case
= even with coalescing

m Memory usage:

= will depend on placement policy
" First-fit, next-fit or best-fit

m Not used in practice formalloc () /free () because of
linear-time allocation
= used in many special purpose applications

m The concepts of splitting and boundary tag coalescing are
general to all allocators

53

University of Washington

Keeping Track of Free Blocks

m Method 1: Implicit free list using length—Ilinks all blocks

m Method 2: Explicit free list among the free blocks using pointers

_— .

5| 7 4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

54

University of Washington

Explicit Free Lists

Allocated (as before) Free
size a size a
next
payload and prev
padding
size a size a

m Maintain list(s) of free blocks, not all blocks
" The “next” free block could be anywhere

= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing

= Luckily we track only free blocks, so we can use payload area

55

University of Washington

Explicit Free Lists

m Logically (doubly-linked lists):

A |1 B [c

—
v

/ Forward (next) links
A m B

—a / 64 4 4|

4

Back (prev) links

56

University of Washington

Allocating From Explicit Free Lists

conceptual graphic

Before

R

After (with splitting)

U

= malloc(..)

57

University of Washington

Freeing With Explicit Free Lists

m /nsertion policy: Where in the free list do you put a newly
freed block?

= LIFO (last-in-first-out) policy
= Insert freed block at the beginning of the free list
= Pro: simple and constant time
= Con: studies suggest fragmentation is worse than address ordered

= Address-ordered policy

= Insert freed blocks so that free list blocks are always in address
order:
addr(prev) < addr(curr) < addr(next)

= Con: requires search

= Pro: studies suggest fragmentation is lower than LIFO

58

University of Washington

Freeing With a LIFO Policy (Case 1)

conceptual graphic

Before

free (p)
Root I~ *a o)

m Insert the freed block at the root of the list

After

Root I @

59

Freeing With a LIFO Policy (Case 2)

conceptual graphic

%o

m Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

After

Before free (p)

Root i I

; :

Root .—>

° <

60

Freeing With a LIFO Policy (Case 3)

conceptual graphic
free (p)

Root } I % o

m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

After o

Root .’ o) B

Before

o ¢
@
|

61

Freeing With a LIFO Policy (Case 4)

conceptual graphic

iy

m Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

Before free (p)

Root i I

After

Root >

°
P —

o ¢
@

62

University of Washington

Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free since needs to splice blocks
in and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?

m Most common use of linked lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

63

University of Washington

Keeping Track of Free Blocks

m Method 1: Implicit list using length—links all blocks

m Method 2: Explicit list among the free blocks using pointers

/_\

5 4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

64

Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

1-2 > > > —>

5_8 > —>

9-inf —

m Often have separate classes for each small size
m For larger sizes: One class for each two-power size

65

University of Washington

Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:
= Search appropriate free list for block of size m >n
= |f an appropriate block is found:
= Split block and place fragment on appropriate list (optional)
" |f no block is found, try next larger class
= Repeat until block is found

m If no block is found:
= Request additional heap memory from OS (using sbrk ())
= Allocate block of n bytes from this new memory
= Place remainder as a single free block in largest size class

66

University of Washington

Seglist Allocator (cont.)

m To free a block:
" Coalesce and place on appropriate list (optional)

m Advantages of seglist allocators
" Higher throughput
= |og time for power-of-two size classes
= Better memory utilization

= First-fit search of segregated free list approximates a best-fit search
of entire heap.

= Extreme case: Giving each block its own size class is equivalent to
best-fit.

67

University of Washington

Summary of Key Allocator Policies

m Placement policy:
" First-fit, next-fit, best-fit, etc.
" Trades off lower throughput for less fragmentation

= |nteresting observation: segregated free lists approximate a best fit
placement policy without having to search entire free list

m Splitting policy:
" When do we go ahead and split free blocks?
= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" Immediate coalescing: coalesce each time £ree () is called

= Deferred coalescing: try to improve performance of £ree () by
deferring coalescing until needed. Examples:

= Coalesce as you scan the free list formalloc ()
= Coalesce when the amount of external fragmentation reaches
some threshold

68

University of Washington

Implicit Memory Management:
Garbage Collection

m Garbage collection: automatic reclamation of heap-allocated
storage—application never has to free

void foo () {
int *p = malloc(128);
return; /* p block is now garbage */

m Common in functional languages, scripting languages, and
modern object oriented languages:
= Lisp, ML, Java, Perl, Mathematica

m Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage

69

University of Washington

Garbage Collection

m How does the memory manager know when memory can be

freed?
" |n general, we cannot know what is going to be used in the future since it

depends on conditionals
= But, we can tell that certain blocks cannot be used if there are no
pointers to them

m Must make certain assumptions about pointers
= Memory manager can distinguish pointers from non-pointers
= All pointers point to the start of a block in the heap

= Cannot hide pointers
(e.g., by casting (coercing) them to an int, and then back again)

70

Classical GC Algorithms

m Mark-and-sweep collection (McCarthy, 1960)

= Does not move blocks (unless you also “compact”)

m Reference counting (Collins, 1960)
= Does not move blocks (not discussed)
m Copying collection (Minsky, 1963)
= Moves blocks (not discussed)
m Generational Collectors (Lieberman and Hewitt, 1983)
= Collection based on lifetimes
= Most allocations become garbage very soon
= So focus reclamation work on zones of memory recently allocated
m For more information:

Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.

71

Memory as a Graph

University of Washington

m We view memory as a directed graph

= Each block is a node in the graph

= Each pointer is an edge in the graph

" Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)

Root nodes O Q

Q
\

/
&
\O o

O reachable

Not-reachable

O (garbage)

A node (block) is reachable if there is a path from any root to that node

Non-reachable nodes are garbage (cannot be needed by the application)

72

University of Washington

Mark and Sweep Collecting

m Can build on top of malloc/free package
= Allocate using malloc until you “run out of space”

m When out of space:
= Use extra mark bit in the head of each block
" Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked

/\royit
Before mark I_'l\/ljzl

After mark | |

—

_I Mark bit set

i

free _I

After sweep I_ free

73

University of Washington

Assumptions For a Simple Implementation

m Application
" new (n): returns pointer to new block with all locations cleared
" read(b,i) : read location i of block b into register
" write(b,i,v): write vinto location i of blockb

m Each block will have a header word
= Addressed asb[-1], forablockb

m Instructions used by the Garbage Collector
" is ptr(p) : determines whether pis a pointer

= length (b): returns the length of block b, not including the header
" get roots(): returns all the roots

74

University of Washington

Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // do nothing if not pointer
if (markBitSet(p)) return; // check if already marked
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // recursively call mark on

mark (p[i]) ; // all words in the block

return;

}

Sweep using lengths to find next block

ptr sweep (ptr p, ptr end) ({
while (p < end) {
if markBitSet (p)
clearMarkBit () ;
else if (allocateBitSet(p))
free(p) ;
p += length(p) ;

75

Conservative Mark & Sweep in C

m A “conservative garbage collector” for C programs
" is ptr () determines if a word is a pointer by checking if it points to
an allocated block of memory

= But, in C pointers can point to the middle of a block
ptr

header l

m So how to find the beginning of the block?
= Can use a balanced binary tree to keep track of all allocated blocks
(key is start-of-block)
= Balanced-tree pointers can be stored in header (use two additional

words
) head data

size

// \\ Left: smaller addresses
Right: larger addresses

left right

76

University of Washington

Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks

77

University of Washington

Dereferencing Bad Pointers

m The classic scanf bug

int wval;

scanf (“%d”, wval) ;

78

University of Washington

Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec (int **A, int *x) {
int *y = malloc(N * sizeof(int)),
int 1, j;

for (i=0; i<N; i++)
for (j=0; j<N; Jj++)
y[i] += A[i][3] * x[3]~
return y;

79

University of Washington

Overwriting Memory

m Allocating the (possibly) wrong sized object

int **p;
p = malloc(N * sizeof(int));
for (i=0; i<N; i++) {

pl[i] = malloc(M * sizeof (int)) ;

}

80

University of Washington

Overwriting Memory

m Off-by-one error

int **p;
p = malloc(N * sizeof(int *));

for (i=0; i<=N; i++) {
pl[i] = malloc(M * sizeof(int));

}

81

University of Washington

Overwriting Memory

m Not checking the max string size

char s[8];
int 1i;

gets(s); /* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks
" Your last assignment

82

University of Washington

Overwriting Memory

m Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (*p && *p !'= val)
p += sizeof (int);

return p;

83

University of Washington

Referencing Nonexistent Variables

m Forgetting that local variables disappear when a function
returns

int *foo () {
int wval;

return &val;

84

University of Washington

Freeing Blocks Multiple Times

m Nasty!

x = malloc(N * sizeof(int));
<manipulate x>
free (x) ;

y = malloc(M * sizeof(int));
<manipulate y>
free (x) ;

m What does the free list look like?

X = malloc(N * sizeof (int)) ;
<manipulate x>

free (x) ;

free (x) ;

85

University of Washington

Referencing Freed Blocks

m Evil!

x = malloc(N * sizeof(int)) ;
<manipulate x>
free (x) ;

y = malloc(M * sizeof(int));
for (i=0; i<M; i++)
y[i] = x[1]++;

86

University of Washington

Failing to Free Blocks (Memory Leaks)

m Slow, silent, long-term killer!

foo() {
int *x = malloc (N*sizeof (int)) ;

return;

87

University of Washington

Too much is reachable

m Mark procedure is recursive
= Will we have enough stack space?

m We are garbage collecting because we are running out of
memory, right?

88

University of Washington

Failing to Free Blocks (Memory Leaks)

m Freeing only part of a data structure

struct list {
int wval;
struct list *next;

};

foo() {
struct list *head = malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;

89

University of Washington

Overwriting Memory

m Referencing a pointer instead of the object it points to

int *getPacket (int **packets, int *size) {
int *packet;
packet = packets[O0];
packets[0] = packets[*size - 1];
*size--; // what is happening here?
reorderPackets (packets, *size, 0);
return (packet) ;

90

University of Washington

Dealing With Memory Bugs
m Conventional debugger (gdb)

" Good for finding bad pointer dereferences
= Hard to detect the other memory bugs

m Debuggingmalloc (UToronto CSRImalloc)
= Wrapper around conventionalmalloc
= Detects memory bugs atmalloc and £free boundaries
= Memory overwrites that corrupt heap structures
= Some instances of freeing blocks multiple times

= Memory leaks
= Cannot detect all memory bugs

= QOverwrites into the middle of allocated blocks
= Freeing block twice that has been reallocated in the interim
= Referencing freed blocks

91

