Today

■ Moving on to... Memory allocation

Memory

VM Simplifies Memory Layout

Linking

- Each program has similar virtual address space
- Code, stack, and shared libraries always start at the same address

invisible to **Kernel virtual memory** user code 0xc0000000User stack (created at runtime) %esp (stack pointer) Memory-mapped region for shared libraries 0×40000000 brk Run-time heap (created by malloc) Loaded Read/write segment from (.data, .bss) the **Read-only segment** executable (.init,.text,.rodata) file Unused

0x08048000

Process Memory Image

memory protected from user code

Memory Allocation

Dynamic memory allocation

- Size of data structures may only be known at run time
- Need to allocate space on the heap
- Need to de-allocate (free) unused memory so it can be re-allocated

■ Implementation --- "Memory allocator"

- Implicit free lists
- Explicit free lists subject of next programming assignment
- Segregated free lists

Garbage collection

Common memory-related bugs in C programs

Process Memory Image

Dynamic Memory Allocation

- Memory allocator?
 - VM hardware and kernel allocate pages
 - Application objects are typically smaller
 - Allocator manages objects within pages

Application
Dynamic Memory Allocator
Heap Memory

■ How should the application code allocate memory?

Dynamic Memory Allocation

Memory allocator?

- VM hardware and kernel allocate pages
- Application objects are typically smaller
- Allocator manages objects within pages

Application
nic Memory Allocator
Heap Memory

Dynam

Explicit vs. Implicit Memory Allocator

- Explicit: application allocates and frees space
 - In C: malloc() and free()
- Implicit: application allocates, but does not free space
 - In Java, ML, Lisp: garbage collection

Allocation

- A memory allocator doles out memory blocks to application
- A "block" is a contiguous range of bytes of the appropriate size
 - What is appropriate size?

Malloc Package

- #include <stdlib.h>
- void *malloc(size_t size)
 - Successful:
 - Returns a pointer to a memory block of at least size bytes (typically) aligned to 8-byte boundary
 - If size == 0, returns NULL
 - Unsuccessful: returns NULL (0) and sets errno (a global variable)
- Is this enough? That's it? ②

Malloc Package

- #include <stdlib.h>
- void *malloc(size_t size)
 - Successful:
 - Returns a pointer to a memory block of at least size bytes (typically) aligned to 8-byte boundary
 - If size == 0, returns NULL
 - Unsuccessful: returns NULL (0) and sets errno (a global variable)
- void free(void *p)
 - Returns the block pointed at by p to the pool of available memory
 - p must come from a previous call to malloc or realloc
- anything else()? ©

Malloc Package

- #include <stdlib.h>
- void *malloc(size_t size)
 - Successful:
 - Returns a pointer to a memory block of at least size bytes (typically) aligned to 8-byte boundary
 - If size == 0, returns NULL
 - Unsuccessful: returns NULL (0) and sets errno (a global variable)
- void free(void *p)
 - Returns the block pointed at by p to the pool of available memory
 - p must come from a previous call to malloc or realloc
- void *realloc(void *p, size_t size)
 - Changes size of block p and returns pointer to new block
 - Contents of new block unchanged up to min of old and new size
 - Old block has been free'd (logically, if new != old)

Malloc Example

```
void foo(int n, int m) {
 int i, *p;
 /* allocate a block of n ints */
 p = (int *)malloc(n * sizeof(int));
                                              Why?
 perror("malloc");
   exit(0);
 for (i=0; i < n; i++) p[i] = i;
 /* add m bytes to end of p block */
 if ((p = (int *)realloc(p, (n+m) * sizeof(int))) == NULL) {
  perror("realloc");
   exit(0);
 for (i=n; i < n+m; i++) p[i] = i;
 /* print new array */
 for (i=0; i<n+m; i++)
   printf("%d\n", p[i]);
 free(p); /* return p to available memory pool */
```

Assumptions Made in This Lecture

- Memory is word addressed (each word can hold a pointer)
 - block size is a multiple of words

p2 = malloc(5)

$$p2 = malloc(5)$$

$$p2 = malloc(5)$$

$$p3 = malloc(6)$$

$$p2 = malloc(5)$$

$$p3 = malloc(6)$$

$$p2 = malloc(5)$$

$$p3 = malloc(6)$$

free (p2)

$$p2 = malloc(5)$$

$$p3 = malloc(6)$$

free (p2)

$$p2 = malloc(5)$$

$$p3 = malloc(6)$$

free (p2)

p4 = malloc(2)

How are going to implement that?!?

■ Ideas?

Applications

- Can issue arbitrary sequence of malloc() and free() requests
- free() requests must be to a malloc()'d block

Applications

- Can issue arbitrary sequence of malloc() and free() requests
- free() requests must be to a malloc()'d block

Allocators

Can't control number or size of allocated blocks

Applications

- Can issue arbitrary sequence of malloc() and free() requests
- free() requests must be to a malloc()'d block

- Can't control number or size of allocated blocks
- Must respond immediately to malloc() requests
 - *i.e.*, can't reorder or buffer requests

Applications

- Can issue arbitrary sequence of malloc() and free() requests
- free() requests must be to a malloc()'d block

- Can't control number or size of allocated blocks
- Must respond immediately to malloc() requests
 - *i.e.*, can't reorder or buffer requests
- Must allocate blocks from free memory
 - i.e., can only place allocated blocks in free memory, why?

Applications

- Can issue arbitrary sequence of malloc() and free() requests
- free() requests must be to a malloc()'d block

- Can't control number or size of allocated blocks
- Must respond immediately to malloc() requests
 - *i.e.*, can't reorder or buffer requests
- Must allocate blocks from free memory
 - *i.e.*, can only place allocated blocks in free memory
- Must align blocks so they satisfy all alignment requirements
 - 8 byte alignment for GNU malloc (**libc** malloc) on Linux boxes

Applications

- Can issue arbitrary sequence of malloc() and free() requests
- free() requests must be to a malloc()'d block

- Can't control number or size of allocated blocks
- Must respond immediately to malloc() requests
 - *i.e.*, can't reorder or buffer requests
- Must allocate blocks from free memory
 - *i.e.*, can only place allocated blocks in free memory
- Must align blocks so they satisfy all alignment requirements
 - 8 byte alignment for GNU malloc (libc malloc) on Linux boxes
- Can manipulate and modify only free memory, why and what for?

Applications

- Can issue arbitrary sequence of malloc() and free() requests
- free() requests must be to a malloc()'d block

- Can't control number or size of allocated blocks
- Must respond immediately to malloc() requests
 - *i.e.*, can't reorder or buffer requests
- Must allocate blocks from free memory
 - *i.e.*, can only place allocated blocks in free memory
- Must align blocks so they satisfy all alignment requirements
 - 8 byte alignment for GNU malloc (libc malloc) on Linux boxes
- Can manipulate and modify only free memory
- Can't move the allocated blocks once they are malloc()'d
 - *i.e.*, compaction is not allowed. Why not?

Performance Goal: Throughput

- Given some sequence of malloc and free requests:
 - R_{0} , R_{1} , ..., R_{k} , ..., R_{n-1}
- Goals: maximize throughput and peak memory utilization
 - These goals are often conflicting
 - What's throughput?

Performance Goal: Throughput

- Given some sequence of malloc and free requests:
 - $R_0, R_1, ..., R_k, ..., R_{n-1}$
- Goals: maximize throughput and peak memory utilization
 - These goals are often conflicting
- Throughput:
 - Number of completed requests per unit time
 - Example:
 - 5,000 malloc() calls and 5,000 free() calls in 10 seconds
 - Throughput is 1,000 operations/second
 - How to do malloc() and free() in O(1)? What's the problem?

Performance Goal: Peak Memory Utilization

- Given some sequence of malloc and free requests:
 - $R_0, R_1, ..., R_k, ..., R_{n-1}$
- *Def*: Aggregate payload P_k
 - malloc(p) results in a block with a payload of p bytes
 - After request R_k has completed, the **aggregate payload** P_k is the sum of currently allocated payloads

Performance Goal: Peak Memory Utilization

- Given some sequence of malloc and free requests:
 - $R_0, R_1, ..., R_k, ..., R_{n-1}$
- *Def*: Aggregate payload P_k
 - malloc(p) results in a block with a payload of p bytes
 - After request R_k has completed, the **aggregate payload** P_k is the sum of currently allocated payloads
- **Def**: Current heap size = H_k
 - Assume H_k is monotonically nondecreasing
 - Allocator can increase size of heap using sbrk ()

Performance Goal: Peak Memory Utilization

- Given some sequence of malloc and free requests:
 - $R_0, R_1, ..., R_k, ..., R_{n-1}$
- Def: Aggregate payload P_k
 - malloc(p) results in a block with a payload of p bytes
 - After request R_k has completed, the **aggregate payload** P_k is the sum of currently allocated payloads
- **Def:** Current heap size = H_k
 - Assume H_k is monotonically nondecreasing
 - Allocator can increase size of heap using sbrk ()
- Def: Peak memory utilization after k requests
 - $U_k = (\max_{i < k} P_i) / H_k$
 - Goal: maximize utilization for a seq of requests.
 - Is this hard? Why? And what happens to throughput?

Fragmentation

- Poor memory utilization caused by *fragmentation*
 - internal fragmentation
 - external fragmentation

Internal Fragmentation

 For a given block, internal fragmentation occurs if payload is smaller than block size

Caused by

- overhead of maintaining heap data structures (inside block, outside payload)
- padding for alignment purposes
- explicit policy decisions
 (e.g., to return a big block to satisfy a small request, why would anyone do that? Crazy people.)
- Depends only on the pattern of previous requests
 - thus, easy to measure

External Fragmentation

 Occurs when there is enough aggregate heap memory, but no single free block is large enough

External Fragmentation

 Occurs when there is enough aggregate heap memory, but no single free block is large enough

$$p2 = malloc(5)$$

$$p3 = malloc(6)$$

free (p2)

p4 = malloc(6)

External Fragmentation

 Occurs when there is enough aggregate heap memory, but no single free block is large enough

p4 = malloc(6) Oops! (what would happen now?)

External Fragmentation

 Occurs when there is enough aggregate heap memory, but no single free block is large enough

- Depends on the pattern of future requests
 - Thus, difficult to measure

Implementation Issues

- How to know how much memory is being free ()'d when it is given only a pointer (and no length)?
- How to keep track of the free blocks?
- What to do with extra space when allocating a block that is smaller than the free block it is placed in?
- How to pick a block to use for allocation—many might fit?
- How to reinsert a freed block into the heap?

Knowing How Much to Free

Standard method

- Keep the length of a block in the word preceding the block.
 - This word is often called the *header field* or *header*
- Requires an extra word for every allocated block

Keeping Track of Free Blocks

Method 1: Implicit list using length—links all blocks

■ Method 2: *Explicit list* among the free blocks using pointers

- Method 3: Segregated free list
 - Different free lists for different size classes
- Method 4: *Blocks sorted by size*
 - Can use a balanced binary tree (e.g. red-black tree) with pointers within each free block, and the length used as a key

Implicit List

- For each block we need: length, is-allocated?
 - Could store this information in two words: wasteful!
- Standard trick
 - If blocks are aligned, some low-order address bits are always 0
 - Instead of storing an always-0 bit, use it as a allocated/free flag
 - When reading size word, must mask out this bit

Format of allocated and free blocks

a = 1: allocated block

a = 0: free block

size: block size

payload: application data

(allocated blocks only)

Example

Sequence of blocks in heap: 2/0, 4/1, 8/0, 4/1

8-byte alignment

- May require initial unused word
- Causes some internal fragmentation
- One word (0/1) to mark end of list
- Here: block size in words for simplicity

Implicit List: Finding a Free Block

■ First fit:

Search list from beginning, choose first free block that fits: (Cost?)

- Can take linear time in total number of blocks (allocated and free)
- In practice it can cause "splinters" at beginning of list

Next fit:

- Like first-fit, but search list starting where previous search finished
- Should often be faster than first-fit: avoids re-scanning unhelpful blocks
- Some research suggests that fragmentation is worse

Best fit:

- Search the list, choose the best free block: fits, with fewest bytes left over
- Keeps fragments small—usually helps fragmentation
- Will typically run slower than first-fit

Implicit List: Allocating in Free Block

- Allocating in a free block: splitting
 - Since allocated space might be smaller than free space, we might want to split the block


```
void addblock(ptr p, int len) {
  int newsize = ((len + 1) >> 1) << 1;
  int oldsize = *p & -2;
  *p = newsize | 1;
  if (newsize < oldsize)
    *(p+newsize) = oldsize - newsize;
}</pre>
```

Implicit List: Allocating in Free Block

- Allocating in a free block: splitting
 - Since allocated space might be smaller than free space, we might want to split the block


```
void addblock(ptr p, int len) {
  int newsize = ((len + 1) >> 1) << 1; // round up to even
  int oldsize = *p & -2; // mask out low bit
  *p = newsize | 1; // set new length
  if (newsize < oldsize)
    *(p+newsize) = oldsize - newsize; // set length in remaining
}</pre>
```

Implicit List: Freeing a Block

Simplest implementation:

Need only clear the "allocated" flag

But can lead to "false fragmentation"

malloc(5) Oops!

There is enough free space, but the allocator won't be able to find it

Implicit List: Coalescing

- Join (coalesce) with next/previous blocks, if they are free
 - Coalescing with next block

But how do we coalesce with previous block?

Implicit List: Bidirectional Coalescing

- **Boundary tags** [Knuth73]
 - Replicate size/allocated word at "bottom" (end) of free blocks
 - Allows us to traverse the "list" backwards, but requires extra space
 - Important and general technique!

a = 1: allocated block

a = 0: free block

size: total block size

payload: application data (allocated blocks only)

Constant Time Coalescing

Constant Time Coalescing

Implicit Lists: Summary

- Implementation: very simple
- Allocate cost:
 - linear time worst case
- Free cost:
 - constant time worst case
 - even with coalescing
- Memory usage:
 - will depend on placement policy
 - First-fit, next-fit or best-fit
- Not used in practice for malloc()/free() because of linear-time allocation
 - used in many special purpose applications
- The concepts of splitting and boundary tag coalescing are general to all allocators

Keeping Track of Free Blocks

■ Method 1: *Implicit free list* using length—links all blocks

■ Method 2: Explicit free list among the free blocks using pointers

- Method 3: Segregated free list
 - Different free lists for different size classes
- Method 4: *Blocks sorted by size*
 - Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the length used as a key

Explicit Free Lists

Allocated (as before)

Free

■ Maintain list(s) of *free* blocks, not *all* blocks

- The "next" free block could be anywhere
 - So we need to store forward/back pointers, not just sizes
- Still need boundary tags for coalescing
- Luckily we track only free blocks, so we can use payload area

Explicit Free Lists

Logically (doubly-linked lists):

■ Physically: blocks can be in any order

Allocating From Explicit Free Lists

Freeing With Explicit Free Lists

- Insertion policy: Where in the free list do you put a newly freed block?
 - LIFO (last-in-first-out) policy
 - Insert freed block at the beginning of the free list
 - **Pro:** simple and constant time
 - Con: studies suggest fragmentation is worse than address ordered
 - Address-ordered policy
 - Insert freed blocks so that free list blocks are always in address order:

- Con: requires search
- Pro: studies suggest fragmentation is lower than LIFO

Freeing With a LIFO Policy (Case 1)

Before

Root

conceptual graphic

free ()

Freeing With a LIFO Policy (Case 2)

 Splice out predecessor block, coalesce both memory blocks, and insert the new block at the root of the list

Freeing With a LIFO Policy (Case 3)

conceptual graphic

 Splice out successor block, coalesce both memory blocks and insert the new block at the root of the list

Freeing With a LIFO Policy (Case 4)

 Splice out predecessor and successor blocks, coalesce all 3 memory blocks and insert the new block at the root of the list

Explicit List Summary

- Comparison to implicit list:
 - Allocate is linear time in number of free blocks instead of all blocks
 - Much faster when most of the memory is full
 - Slightly more complicated allocate and free since needs to splice blocks in and out of the list
 - Some extra space for the links (2 extra words needed for each block)
 - Does this increase internal fragmentation?
- Most common use of linked lists is in conjunction with segregated free lists
 - Keep multiple linked lists of different size classes, or possibly for different types of objects

Keeping Track of Free Blocks

■ Method 1: *Implicit list* using length—links all blocks

■ Method 2: Explicit list among the free blocks using pointers

- Method 3: Segregated free list
 - Different free lists for different size classes
- Method 4: *Blocks sorted by size*
 - Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the length used as a key

Segregated List (Seglist) Allocators

Each size class of blocks has its own free list

- Often have separate classes for each small size
- For larger sizes: One class for each two-power size

Seglist Allocator

Given an array of free lists, each one for some size class

To allocate a block of size n:

- Search appropriate free list for block of size m > n
- If an appropriate block is found:
 - Split block and place fragment on appropriate list (optional)
- If no block is found, try next larger class
- Repeat until block is found

If no block is found:

- Request additional heap memory from OS (using sbrk ())
- Allocate block of n bytes from this new memory
- Place remainder as a single free block in largest size class

Seglist Allocator (cont.)

■ To free a block:

Coalesce and place on appropriate list (optional)

Advantages of seglist allocators

- Higher throughput
 - log time for power-of-two size classes
- Better memory utilization
 - First-fit search of segregated free list approximates a best-fit search of entire heap.
 - Extreme case: Giving each block its own size class is equivalent to best-fit.

Summary of Key Allocator Policies

Placement policy:

- First-fit, next-fit, best-fit, etc.
- Trades off lower throughput for less fragmentation
- Interesting observation: segregated free lists approximate a best fit placement policy without having to search entire free list

Splitting policy:

- When do we go ahead and split free blocks?
- How much internal fragmentation are we willing to tolerate?

Coalescing policy:

- Immediate coalescing: coalesce each time free() is called
- Deferred coalescing: try to improve performance of free() by deferring coalescing until needed. Examples:
 - Coalesce as you scan the free list for malloc()
 - Coalesce when the amount of external fragmentation reaches some threshold

Implicit Memory Management: Garbage Collection

 Garbage collection: automatic reclamation of heap-allocated storage—application never has to free

```
void foo() {
  int *p = malloc(128);
  return; /* p block is now garbage */
}
```

- Common in functional languages, scripting languages, and modern object oriented languages:
 - Lisp, ML, Java, Perl, Mathematica
- Variants ("conservative" garbage collectors) exist for C and C++
 - However, cannot necessarily collect all garbage

Garbage Collection

- How does the memory manager know when memory can be freed?
 - In general, we cannot know what is going to be used in the future since it depends on conditionals
 - But, we can tell that certain blocks cannot be used if there are no pointers to them
- Must make certain assumptions about pointers
 - Memory manager can distinguish pointers from non-pointers
 - All pointers point to the start of a block in the heap
 - Cannot hide pointers
 (e.g., by casting (coercing) them to an int, and then back again)

Classical GC Algorithms

- Mark-and-sweep collection (McCarthy, 1960)
 - Does not move blocks (unless you also "compact")
- Reference counting (Collins, 1960)
 - Does not move blocks (not discussed)
- Copying collection (Minsky, 1963)
 - Moves blocks (not discussed)
- Generational Collectors (Lieberman and Hewitt, 1983)
 - Collection based on lifetimes
 - Most allocations become garbage very soon
 - So focus reclamation work on zones of memory recently allocated
- For more information:

Jones and Lin, "Garbage Collection: Algorithms for Automatic Dynamic Memory", John Wiley & Sons, 1996.

Memory as a Graph

- We view memory as a directed graph
 - Each block is a node in the graph
 - Each pointer is an edge in the graph
 - Locations not in the heap that contain pointers into the heap are called root nodes (e.g. registers, locations on the stack, global variables)

A node (block) is *reachable* if there is a path from any root to that node Non-reachable nodes are *garbage* (cannot be needed by the application)

Mark and Sweep Collecting

- Can build on top of malloc/free package
 - Allocate using malloc until you "run out of space"
- When out of space:
 - Use extra mark bit in the head of each block
 - Mark: Start at roots and set mark bit on each reachable block
 - Sweep: Scan all blocks and free blocks that are not marked

Assumptions For a Simple Implementation

Application

- new(n): returns pointer to new block with all locations cleared
- read(b,i): read location i of block b into register
- write(b,i,v): write v into location i of block b

Each block will have a header word

Addressed as b[-1], for a block b

Instructions used by the Garbage Collector

- is ptr(p): determines whether p is a pointer
- length (b): returns the length of block b, not including the header
- get_roots(): returns all the roots

Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block

```
ptr sweep(ptr p, ptr end) {
    while (p < end) {
        if markBitSet(p)
            clearMarkBit();
        else if (allocateBitSet(p))
            free(p);
        p += length(p);
}</pre>
```

Conservative Mark & Sweep in C

- A "conservative garbage collector" for C programs
 - is_ptr() determines if a word is a pointer by checking if it points to an allocated block of memory
 - But, in C pointers can point to the middle of a block

So how to find the beginning of the block?

- Can use a balanced binary tree to keep track of all allocated blocks (key is start-of-block)
- Balanced-tree pointers can be stored in header (use two additional words)

Left: smaller addresses **Right:** larger addresses

Memory-Related Perils and Pitfalls

- Dereferencing bad pointers
- Reading uninitialized memory
- Overwriting memory
- Referencing nonexistent variables
- Freeing blocks multiple times
- Referencing freed blocks
- Failing to free blocks

Dereferencing Bad Pointers

■ The classic scanf bug

```
int val;
...
scanf("%d", val);
```

Reading Uninitialized Memory

Assuming that heap data is initialized to zero

```
/* return y = Ax */
int *matvec(int **A, int *x) {
   int *y = malloc( N * sizeof(int) );
   int i, j;

for (i=0; i<N; i++)
     for (j=0; j<N; j++)
        y[i] += A[i][j] * x[j];
   return y;
}</pre>
```

Allocating the (possibly) wrong sized object

```
int **p;

p = malloc( N * sizeof(int) );

for (i=0; i<N; i++) {
   p[i] = malloc( M * sizeof(int) );
}</pre>
```

Off-by-one error

```
int **p;

p = malloc( N * sizeof(int *) );

for (i=0; i<=N; i++) {
   p[i] = malloc( M * sizeof(int) );
}</pre>
```

Not checking the max string size

```
char s[8];
int i;

gets(s); /* reads "123456789" from stdin */
```

- Basis for classic buffer overflow attacks
 - Your last assignment

Misunderstanding pointer arithmetic

```
int *search(int *p, int val) {
  while (*p && *p != val)
     p += sizeof(int);
  return p;
}
```

Referencing Nonexistent Variables

Forgetting that local variables disappear when a function returns

```
int *foo () {
   int val;

return &val;
}
```

Freeing Blocks Multiple Times

Nasty!

What does the free list look like?

Referencing Freed Blocks

■ Evil!

Failing to Free Blocks (Memory Leaks)

Slow, silent, long-term killer!

```
foo() {
   int *x = malloc(N*sizeof(int));
   ...
   return;
}
```

Too much is reachable

- Mark procedure is recursive
 - Will we have enough stack space?
- We are garbage collecting because we are running out of memory, right?

Failing to Free Blocks (Memory Leaks)

Freeing only part of a data structure

```
struct list {
  int val;
  struct list *next;
};
foo() {
   struct list *head = malloc( sizeof(struct list) );
  head->val = 0;
  head->next = NULL;
   <create and manipulate the rest of the list>
   free (head) ;
   return;
```

■ Referencing a pointer instead of the object it points to

Dealing With Memory Bugs

- Conventional debugger (gdb)
 - Good for finding bad pointer dereferences
 - Hard to detect the other memory bugs
- Debugging malloc (UToronto CSRI malloc)
 - Wrapper around conventional malloc
 - Detects memory bugs at malloc and free boundaries
 - Memory overwrites that corrupt heap structures
 - Some instances of freeing blocks multiple times
 - Memory leaks
 - Cannot detect all memory bugs
 - Overwrites into the middle of allocated blocks
 - Freeing block twice that has been reallocated in the interim
 - Referencing freed blocks