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Today

m Moving on to... Memory allocation
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Process Memory Image

1 memory protected

kernel virtual memory from user code

stack
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What is the heap for?

How do we use it? |

run-time heap

uninitialized data (.bss)

initialized data (.data)

program text (.text)
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Memory Allocation

m Dynamic memory allocation

= Size of data structures may only be known at run time

"= Need to allocate space on the heap

"= Need to de-allocate (free) unused memory so it can be re-allocated
m Implementation --- “Memory allocator”

= Implicit free lists

= Explicit free lists — subject of next programming assignment

= Segregated free lists

m Garbage collection
m Common memory-related bugs in C programs
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Process Memory Image

1 memory protected

kernel virtual memory from user code

R stack

zesp— ‘

Allocators request
additional heap memory

from the kernel using the
sbrk () function: t

error = sbrk(amt_more) run-time heap (viamalloc)

the “brk” ptr

a

uninitialized data (.bss)

initialized data (.data)

program text (.text)




Dynamic Memory Allocation

m Memory allocator?

Applicati
= VM hardware and kernel allocate pages pprication

= Application objects are typically smaller Dynamic Memory Allocator

= Allocator manages objects within pages Heap Memory

m How should the application code allocate memory?
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Dynamic Memory Allocation

m Memory allocator?

Applicati
= VM hardware and kernel allocate pages pprication

= Application objects are typically smaller Dynamic Memory Allocator

= Allocator manages objects within pages Heap Memory

m Explicit vs. Implicit Memory Allocator

= Explicit: application allocates and frees space
* InC: malloc () and free ()

= Implicit: application allocates, but does not free space
= |nJava, ML, Lisp: garbage collection

m Allocation
" A memory allocator doles out memory blocks to application

= A “block” is a contiguous range of bytes of the appropriate size
= What is appropriate size?



Malloc Package

m #include <stdlib.h>

m void *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
(typically) aligned to 8-byte boundary

» Ifsize == 0, returns NULL
= Unsuccessful: returns NULL (0) and sets errno (a global variable)

m /s this enough? That’s it? ©



Malloc Package

m #include <stdlib.h>

m void *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
(typically) aligned to 8-byte boundary

» Ifsize == 0, returns NULL
= Unsuccessful: returns NULL (0) and sets errno (a global variable)

m void free(void *p)
= Returns the block pointed at by p to the pool of available memory

= p must come from a previous call tomalloc or realloc

m anything else()? ©



Malloc Package

m #include <stdlib.h>

m void *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
(typically) aligned to 8-byte boundary

» Ifsize == 0, returns NULL
= Unsuccessful: returns NULL (0) and sets errno (a global variable)

m void free(void *p)
= Returns the block pointed at by p to the pool of available memory

= p must come from a previous call tomalloc or realloc
m void *realloc(void *p, size t size)
= Changes size of block p and returns pointer to new block

= Contents of new block unchanged up to min of old and new size
= Old block has been £ree'd (logically, if new !=old)
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Malloc Example

void foo(int n, int m) {
int 1, *p;

/* allocate a block of n ints */

p = (int *)malloc(n * sizeof(int));

if (p == NULL)eH Why?
perror ("malloc") ;
exit (0) ;

}

for (i=0; i<n; i++) pl[i] = 1i;

/* add m bytes to end of p block */

if ((p = (int *)realloc(p, (n+m) * sizeof(int))) == NULL) {
perror ("realloc") ;
exit (0) ;

}

for (i=n; i < n+m; i++) p[i] = 1;
/* print new array */
for (i=0; i<n+m; i++)

printf ("$d\n", pl[i]);

free(p); /* return p to available memory pool */

11
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Assumptions Made in This Lecture

m Memory is word addressed (each word can hold a pointer)
= block size is a multiple of words

\ Y J Q ,_I
Allocated block Free block
(4 words) (3 words) Free word

Allocated word
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Allocation Example

pl = malloc(4)

p2 = malloc(5)
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Allocation Example

pl = malloc(4)

p2 = malloc(5)
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Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)
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Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)
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Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)
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Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)
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Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)
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Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)

20
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How are going to implement that?!?

m /deas?

21



Constraints

m Applications
= Canissue arbitrary sequence of malloc() and free() requests
= free() requests must be to a malloc()’d block
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Constraints

m Applications
= Canissue arbitrary sequence of malloc() and free() requests
= free() requests must be to a malloc()’d block

m Allocators
® Can’t control number or size of allocated blocks
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Constraints

m Applications
= Canissue arbitrary sequence of malloc() and free() requests
= free() requests must be to a malloc()’d block

m Allocators
= Can’t control number or size of allocated blocks
= Must respond immediately to malloc() requests
= j.e., can’t reorder or buffer requests
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Constraints

m Applications
= Canissue arbitrary sequence of malloc() and free() requests
= free() requests must be to a malloc()’d block

m Allocators
= Can’t control number or size of allocated blocks
= Must respond immediately to malloc() requests
= j.e., can’t reorder or buffer requests
= Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory, why?
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Constraints

m Applications
= Canissue arbitrary sequence of malloc() and free() requests
= free() requests must be to a malloc()’d block

m Allocators
= Can’t control number or size of allocated blocks
= Must respond immediately to malloc() requests
= j.e., can’t reorder or buffer requests
= Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory
= Must align blocks so they satisfy all alignment requirements
= 8 byte alignment for GNU malloc (1ibe malloc) on Linux boxes
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Constraints

m Applications
= Canissue arbitrary sequence of malloc() and free() requests
= free() requests must be to a malloc()’d block

m Allocators
= Can’t control number or size of allocated blocks
= Must respond immediately to malloc() requests
= j.e., can’t reorder or buffer requests
= Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory
= Must align blocks so they satisfy all alignment requirements
= 8 byte alignment for GNU malloc (1ibe malloc) on Linux boxes
® Can manipulate and modify only free memory, why and what for?
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Constraints

m Applications
= Canissue arbitrary sequence of malloc() and free() requests
= free() requests must be to a malloc()’d block

m Allocators
= Can’t control number or size of allocated blocks
= Must respond immediately to malloc() requests
= j.e., can’t reorder or buffer requests
= Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory
= Must align blocks so they satisfy all alignment requirements
= 8 byte alignment for GNU malloc (1ibe malloc) on Linux boxes
= Can manipulate and modify only free memory
= Can’t move the allocated blocks once they are malloc()’'d
= j.e., compaction is not allowed. Why not?
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Performance Goal: Throughput

m Given some sequence of malloc and free requests:
Ry, R, ... R, ...,R

m Goals: maximize throughput and peak memory utilization
" These goals are often conflicting
= What’s throughput?

29
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Performance Goal: Throughput

m Given some sequence of malloc and free requests:
Ry, R, ... R, ...,R

m Goals: maximize throughput and peak memory utilization
" These goals are often conflicting

m Throughput:
" Number of completed requests per unit time
= Example:
= 5,000 malloc () callsand 5,000 £ree () callsin 10 seconds
= Throughput is 1,000 operations/second
" Howtodomalloc () and free () in O(1)? What’s the problem?
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Performance Goal: Peak Memory Utilization

m Given some sequence of malloc and free requests:
Ry, Ry, ... R, ..., R,

m Def: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

31
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Performance Goal: Peak Memory Utilization

m Given some sequence of malloc and free requests:
Ry, Ry, ... R, ..., R,

m Def: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

m Def: Current heap size = H,
= Assume H, is monotonically nondecreasing
= Allocator can increase size of heap using sbrk ()

32



University of Washington

Performance Goal: Peak Memory Utilization

m Given some sequence of malloc and free requests:
Ry, Ry, ... R, ..., R,

m Def: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

m Def: Current heap size = H,
= Assume H, is monotonically nondecreasing
= Allocator can increase size of heap using sbrk ()

m Def: Peak memory utilization after k requests
" Uc=(max4 P;) / Hy
= Goal: maximize utilization for a seq of requests.
" /s this hard? Why? And what happens to throughput?
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Fragmentation

m Poor memory utilization caused by fragmentation
= jnternal fragmentation
= external fragmentation

34
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Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is smaller than

block size

Internal
fragmentation

m Caused by

block
A
o Y
r—— payload D

Internal
fragmentation

= overhead of maintaining heap data structures (inside block, outside payload)

= padding for alignment purposes

= explicit policy decisions

(e.g., to return a big block to satisfy a small request, why would anyone do

that? Crazy people.)

m Depends only on the pattern of previous requests
= thus, easy to measure

35
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External Fragmentation

m Occurs when there is enough aggregate heap memory, but no
single free block is large enough

pl = malloc (4)

o
N
I

malloc (5)

p3 = malloc(6)

free (p2)
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External Fragmentation

m Occurs when there is enough aggregate heap memory, but no
single free block is large enough

o
=
I

malloc (4)

o
N
I

malloc (5)

p3 = malloc(6)

free (p2)

p4 = malloc (6)
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External Fragmentation

m Occurs when there is enough aggregate heap memory, but no
single free block is large enough

pl = malloc (4)

o
N
I

malloc (5)

p3 = malloc(6)

free (p2)

p4 = malloc(6) Oops! (what would happen now?)
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External Fragmentation

m Occurs when there is enough aggregate heap memory, but no
single free block is large enough

malloc (4)

o
=
I

o
N
I

malloc (5)

p3 = malloc(6)

free (p2)

p4 = malloc(6) Oops! (what would happen now?)

m Depends on the pattern of future requests
" Thus, difficult to measure
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Implementation Issues

m How to know how much memory is being £ree () 'd when
it is given only a pointer (and no length)?

m How to keep track of the free blocks?

m What to do with extra space when allocating a block that is
smaller than the free block it is placed in?

m How to pick a block to use for allocation—many might fit?

m How to reinsert a freed block into the heap?

40
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Knowing How Much to Free

m Standard method
= Keep the length of a block in the word preceding the block.
= This word is often called the header field or header
= Requires an extra word for every allocated block

pO

pO = malloc(4) 5

I NV

block size data

free (p0)

41
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Keeping Track of Free Blocks

m Method 1: Implicit list using length—links all blocks

m Method 2: Explicit list among the free blocks using pointers

/_\

5 4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers
within each free block, and the length used as a key

42
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Implicit List

m For each block we need: length, is-allocated?
® Could store this information in two words: wasteful!

m Standard trick

= |f blocks are aligned, some low-order address bits are always O
" |nstead of storing an always-0 bit, use it as a allocated/free flag

" When reading size word, must mask out this bit

Format of
allocated and
free blocks

1 word
A
—
size a
payload
optional

padding

a = 1: allocated block
a = 0: free block

size: block size

payload: application data
(allocated blocks only)

43



Example

Sequence of blocks in heap: 2/0, 4/1, 8/0, 4/1

Start of heap

2/0 41

41

m 8-byte alighment
= May require initial unused word
= Causes some internal fragmentation

. 810

\_

8 bytes = 2 word alignment

m One word (0/1) to mark end of list

m Here: block size in words for simplicity

University of Washington

Free word
Allocated word

Allocated word
unused
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Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits: (Cost?)

p = start;
while ((p < end) && \\ not passed end
((*p & 1) || \\ already allocated
(*p <= len))) \\ too small
p=p+ (*p & -2); \\ goto next block (word addressed)

= Can take linear time in total number of blocks (allocated and free)
® |n practice it can cause “splinters” at beginning of list

m Next fit:
= Like first-fit, but search list starting where previous search finished
=  Should often be faster than first-fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse

m Best fit:
= Search the list, choose the best free block: fits, with fewest bytes left over

= Keeps fragments small—usually helps fragmentation
= Will typically run slower than first-fit
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Implicit List: Allocating in Free Block

m Allocating in a free block: splitting
= Since allocated space might be smaller than free space, we might want

to split the block

O~ N —

4 4 6 2
o]
addblock (p, 4)
4 4 4 2 2

void addblock (ptr p, int len) {

int newsize = ((len + 1) >> 1) << 1;

int oldsize = *p & -2;
*p = newsize | 1;
if (newsize < oldsize)

* (ptnewsize) = oldsize - newsize;

46
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Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want
to split the block

O~ N —

4 4 6 2
1
p

addblock (p, 4)

void addblock (ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even

int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)
* (p+newsize) = oldsize - newsize; // set length in remaining

} // part of block

47



University of Washington

Implicit List: Freeing a Block

m Simplest implementation:
= Need only clear the “allocated” flag
void free block(ptr p) { *p = *p & -2 }
= But can lead to “false fragmentation”

o B 2 -

free (p)

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

48
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Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free
" Coalescing with next block

4 4 4 2 2 _
t logically
free (p) ////—_\\\\///’—_\\\ii””—____z?x<:/,/,/"gone
4 4 6 2 2
void free block (ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) == 0)
*p = *p + *next; // add to this block if
} // not allocated

= But how do we coalesce with previous block?

49
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Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
= |mportant and general technique!

Header > Size a
a = 1: allocated block
Format of a = 0: free block
allocated and payload and - _
padding size: total block size

free blocks

payload: application data
Boundary tag — e - (allocated blocks only)
(footer)

50
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Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4

allocated allocated free free

block being
freed

allocated free allocated free

51
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Constant Time Coalescing

ml 1 ml 1 ml 1 ml 1
ml 1 ml 1 ml 1 ml 1
n 1 n 0 n 1 n+m?2 0
— —
n 1 n 0 n 1
m2 1 m2 1 m2 0
m2 1 m2 1 m2 0 n+m?2 0
ml 0 n+ml 0 ml 0 n+fml+m2 | 0
ml 0 ml 0
n 1 n 1
— —
n 1 n+ml 0 n 1
m2 1 m2 1 m2 0
m2 1 m2 1 m2 0 n+ml+m2 | 0
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Implicit Lists: Summary

m Implementation: very simple

m Allocate cost:
" |inear time worst case

m Free cost:
® constant time worst case
= even with coalescing

m Memory usage:

= will depend on placement policy
" First-fit, next-fit or best-fit

m Not used in practice formalloc () /free () because of
linear-time allocation
= used in many special purpose applications

m The concepts of splitting and boundary tag coalescing are
general to all allocators
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Keeping Track of Free Blocks

m Method 1: Implicit free list using length—Ilinks all blocks

m Method 2: Explicit free list among the free blocks using pointers

_— .

5| 7 4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
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Explicit Free Lists

Allocated (as before) Free
size a size a
next
payload and prev
padding
size a size a

m Maintain list(s) of free blocks, not all blocks
" The “next” free block could be anywhere

= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing

= Luckily we track only free blocks, so we can use payload area

55
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Explicit Free Lists

m Logically (doubly-linked lists):

A |1 B [ c

—
v

/ Forward (next) links
A m B

—a / 64 4 4|

4

Back (prev) links
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Allocating From Explicit Free Lists

conceptual graphic

Before

R

After (with splitting)

U

= malloc(..)
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Freeing With Explicit Free Lists

m /nsertion policy: Where in the free list do you put a newly
freed block?

= LIFO (last-in-first-out) policy
= Insert freed block at the beginning of the free list
= Pro: simple and constant time
= Con: studies suggest fragmentation is worse than address ordered

= Address-ordered policy

= Insert freed blocks so that free list blocks are always in address
order:
addr(prev) < addr(curr) < addr(next)

= Con: requires search

= Pro: studies suggest fragmentation is lower than LIFO
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Freeing With a LIFO Policy (Case 1)

conceptual graphic

Before

free (p)
Root I~ *a o)

m Insert the freed block at the root of the list

After

Root I @
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Freeing With a LIFO Policy (Case 2)

conceptual graphic

%o

m Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

After

Before free (p)

Root i I

; :

Root .—>

° <
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Freeing With a LIFO Policy (Case 3)

conceptual graphic
free (p)

Root } I % o

m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

After o

Root .’ o) B

Before

o ¢
@
|
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Freeing With a LIFO Policy (Case 4)

conceptual graphic

iy

m Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

Before free (p)

Root i I

After

Root >

°
P —

o ¢
@
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Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free since needs to splice blocks
in and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?

m Most common use of linked lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects
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Keeping Track of Free Blocks

m Method 1: Implicit list using length—links all blocks

m Method 2: Explicit list among the free blocks using pointers

/_\

5 4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
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Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

1-2 > > > —>

5_8 > —>

9-inf —

m Often have separate classes for each small size
m For larger sizes: One class for each two-power size
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Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:
= Search appropriate free list for block of size m >n
= |f an appropriate block is found:
= Split block and place fragment on appropriate list (optional)
" |f no block is found, try next larger class
= Repeat until block is found

m If no block is found:
= Request additional heap memory from OS (using sbrk () )
= Allocate block of n bytes from this new memory
= Place remainder as a single free block in largest size class
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Seglist Allocator (cont.)

m To free a block:
" Coalesce and place on appropriate list (optional)

m Advantages of seglist allocators
" Higher throughput
= |og time for power-of-two size classes
= Better memory utilization

= First-fit search of segregated free list approximates a best-fit search
of entire heap.

= Extreme case: Giving each block its own size class is equivalent to
best-fit.
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Summary of Key Allocator Policies

m Placement policy:
" First-fit, next-fit, best-fit, etc.
" Trades off lower throughput for less fragmentation

= |nteresting observation: segregated free lists approximate a best fit
placement policy without having to search entire free list

m Splitting policy:
" When do we go ahead and split free blocks?
= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" Immediate coalescing: coalesce each time £ree () is called

= Deferred coalescing: try to improve performance of £ree () by
deferring coalescing until needed. Examples:

= Coalesce as you scan the free list formalloc ()
= Coalesce when the amount of external fragmentation reaches
some threshold
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Implicit Memory Management:
Garbage Collection

m Garbage collection: automatic reclamation of heap-allocated
storage—application never has to free

void foo () {
int *p = malloc(128);
return; /* p block is now garbage */

m Common in functional languages, scripting languages, and
modern object oriented languages:
= Lisp, ML, Java, Perl, Mathematica

m Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage
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Garbage Collection

m How does the memory manager know when memory can be

freed?
" |n general, we cannot know what is going to be used in the future since it

depends on conditionals
= But, we can tell that certain blocks cannot be used if there are no
pointers to them

m Must make certain assumptions about pointers
= Memory manager can distinguish pointers from non-pointers
= All pointers point to the start of a block in the heap

= Cannot hide pointers
(e.g., by casting (coercing) them to an int, and then back again)

70



Classical GC Algorithms

m Mark-and-sweep collection (McCarthy, 1960)

= Does not move blocks (unless you also “compact”)

m Reference counting (Collins, 1960)
= Does not move blocks (not discussed)
m Copying collection (Minsky, 1963)
= Moves blocks (not discussed)
m Generational Collectors (Lieberman and Hewitt, 1983)
= Collection based on lifetimes
= Most allocations become garbage very soon
= So focus reclamation work on zones of memory recently allocated
m For more information:

Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.
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Memory as a Graph

University of Washington

m We view memory as a directed graph

= Each block is a node in the graph

= Each pointer is an edge in the graph

" Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)

Root nodes O Q

Q
\

/
&
\O o

O reachable

Not-reachable

O (garbage)

A node (block) is reachable if there is a path from any root to that node

Non-reachable nodes are garbage (cannot be needed by the application)
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Mark and Sweep Collecting

m Can build on top of malloc/free package
= Allocate using malloc until you “run out of space”

m When out of space:
= Use extra mark bit in the head of each block
" Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked

/\royit
Before mark I_'l\/ljzl

After mark | |

—

_I Mark bit set

i

free _I

After sweep I_ free
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Assumptions For a Simple Implementation

m Application
" new (n): returns pointer to new block with all locations cleared
" read(b,i) : read location i of block b into register
" write(b,i,v): write vinto location i of blockb

m Each block will have a header word
= Addressed asb[-1], forablockb

m Instructions used by the Garbage Collector
" is ptr(p) : determines whether pis a pointer

= length (b): returns the length of block b, not including the header
" get roots(): returns all the roots
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Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // do nothing if not pointer
if (markBitSet(p)) return; // check if already marked
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // recursively call mark on

mark (p[i]) ; // all words in the block

return;

}

Sweep using lengths to find next block

ptr sweep (ptr p, ptr end) ({
while (p < end) {
if markBitSet (p)
clearMarkBit () ;
else if (allocateBitSet(p))
free(p) ;
p += length(p) ;
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Conservative Mark & Sweep in C

m A “conservative garbage collector” for C programs
" is ptr () determines if a word is a pointer by checking if it points to
an allocated block of memory

= But, in C pointers can point to the middle of a block
ptr

header l

m So how to find the beginning of the block?
= Can use a balanced binary tree to keep track of all allocated blocks
(key is start-of-block)
= Balanced-tree pointers can be stored in header (use two additional

words
) head data

size

// \\ Left: smaller addresses
Right: larger addresses

left right
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Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks
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Dereferencing Bad Pointers

m The classic scanf bug

int wval;

scanf (“%d”, wval) ;
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Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec (int **A, int *x) {
int *y = malloc( N * sizeof(int) ),
int 1, j;

for (i=0; i<N; i++)
for (j=0; j<N; Jj++)
y[i] += A[i][3] * x[3]~
return y;
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Overwriting Memory

m Allocating the (possibly) wrong sized object

int **p;
p = malloc( N * sizeof(int) );
for (i=0; i<N; i++) {

pl[i] = malloc( M * sizeof (int) ) ;

}
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Overwriting Memory

m Off-by-one error

int **p;
p = malloc( N * sizeof(int *) );

for (i=0; i<=N; i++) {
pl[i] = malloc( M * sizeof(int) );

}
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Overwriting Memory

m Not checking the max string size

char s[8];
int 1i;

gets(s); /* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks
" Your last assignment
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Overwriting Memory

m Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (*p && *p !'= val)
p += sizeof (int);

return p;
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Referencing Nonexistent Variables

m Forgetting that local variables disappear when a function
returns

int *foo () {
int wval;

return &val;
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Freeing Blocks Multiple Times

m Nasty!

x = malloc( N * sizeof(int) );
<manipulate x>
free (x) ;

y = malloc( M * sizeof(int) );
<manipulate y>
free (x) ;

m What does the free list look like?

X = malloc( N * sizeof (int) ) ;
<manipulate x>

free (x) ;

free (x) ;
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Referencing Freed Blocks

m Evil!

x = malloc( N * sizeof(int) ) ;
<manipulate x>
free (x) ;

y = malloc( M * sizeof(int) );
for (i=0; i<M; i++)
y[i] = x[1]++;
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Failing to Free Blocks (Memory Leaks)

m Slow, silent, long-term killer!

foo() {
int *x = malloc (N*sizeof (int)) ;

return;
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Too much is reachable

m Mark procedure is recursive
= Will we have enough stack space?

m We are garbage collecting because we are running out of
memory, right?
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Failing to Free Blocks (Memory Leaks)

m Freeing only part of a data structure

struct list {
int wval;
struct list *next;

};

foo() {
struct list *head = malloc( sizeof(struct list) );
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;
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Overwriting Memory

m Referencing a pointer instead of the object it points to

int *getPacket (int **packets, int *size) {
int *packet;
packet = packets[O0];
packets[0] = packets[*size - 1];
*size--; // what is happening here?
reorderPackets (packets, *size, 0);
return (packet) ;
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Dealing With Memory Bugs
m Conventional debugger (gdb)

" Good for finding bad pointer dereferences
= Hard to detect the other memory bugs

m Debuggingmalloc (UToronto CSRImalloc)
= Wrapper around conventionalmalloc
= Detects memory bugs atmalloc and £free boundaries
= Memory overwrites that corrupt heap structures
= Some instances of freeing blocks multiple times

= Memory leaks
= Cannot detect all memory bugs

= QOverwrites into the middle of allocated blocks
= Freeing block twice that has been reallocated in the interim
= Referencing freed blocks
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