University of Washington

More S (caches, yes)

m Trick or treat!

m Midterm questions?

" Note: practice midterms posted

m HW 2 due today

m Lab 3 will be released soon

" You will implement a buffer overflow attack! Huahuahua! ©

o
Deja-vu

int array[SIZE];
int A = 0;
for (int i =0 ; i < 200000 ; ++ i) {

for (int j =0 ; j < SIZE ; ++ 3j) {
A += arrayl[jl:;

Runtime

Plot

SIZE

University of Washington

Not to forget...

CPU

A little of super
fast memory (cache$)

Lots of
slower Mem

Cache

Memory

General Cache Mechanics

University of Washington

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

8 9 14 3
Data is copied in block-sized
transfer units
1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

University of Washington

General Cache Concepts: Hit

Request: 14 Data in block b is needed
h 2 5 12 3 Block b is in cache:
Cache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
000000000 0O0OCOCGOGOOOSOOS

University of Washington

General Cache Concepts: Miss

Request: 12 Data in block b is needed
h 3 9 1a 3 Block b is not in cache:
Cache Miss!
Request: 12 Oh no! What now?

Memory 0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15
ce0cccccccccccccce

University of Washington

General Cache Concepts: Miss

Request: 12 Data in block b is needed
h 2 5 12 3 Block b is not in cache:
Cache Miss!

Block b is fetched from

Request: 12
memory
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
000000000 0O0OCOCGOGOOOSOOS

University of Washington

General Cache Concepts: Miss

Request: 12 Data in block b is needed
h . 5 > 3 Block b is not in cache:
Cache Miss!
Block b is fetched from
Request: 12
memory
Block b is stored in cache
Memory 0 1 2 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
1 11
8 2 0 determines which block
12 13 14 15 gets evicted (victim)

University of Washington

Cache Performance Metrics

m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate

= Typical numbers (in percentages):
- 3-10% for L1 CPU
= can be quite small (e.g., < 1%) for L2, depending on size, etc.

m HitTime

= Time to deliver a line in the cache to the processor

» includes time to determine whether the line is in the cache S

= Typical numbers:

» 1-2 clock cycle for L1
= 5-20 clock cycles for L2

m Miss Penalty

L . . Memory
= Additional time required because of a miss

= typically 50-200 cycles for main memory (trend: increasing!)

University of Washington

Lets think about those numbers

m Huge difference between a hit and a miss
= Could be 100k, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

10

University of Washington

Lets think about those numbers

m Huge difference between a hit and a miss
= Could be 100k, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

11

University of Washington

Why do caches work?

12

University of Washington

Why Caches Work

m Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

13

University of Washington

Why Caches Work

m Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

m Temporal locality: (17

= Recently referenced items are likely block
to be referenced again in the near future

= Why is this important?

14

Why Caches Work

m Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

m Temporal locality: (17

= Recently referenced items are likely block
to be referenced again in the near future

m Spatial locality?

15

University of Washington

Why Caches Work

m Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

m Temporal locality: (17

= Recently referenced items are likely block
to be referenced again in the near future

m Spatial locality:

" |tems with nearby addresses tend C I?
to be referenced close together in time

block

®= How do caches take advantage of this?

16

University of Washington

Example: Locality?

sum = 0;

for (1 = 0; 1 < n; i++)
sum += a[i];

return sum;

17

University of Washington

Example: Locality?

sum = 0;

for (= 0; 1 < n; i++)
sum += a[i];

return sum;

m Data:
= Temporal: sumreferenced in each iteration
= Spatial: array a[] accessed in stride-1 pattern

18

University of Washington

Example: Locality?

sum = 0;

for (1 = 0; 1 < n; i++)
sum += a[i];

return sum;

m Data:
= Temporal: sumreferenced in each iteration
= Spatial: array a[] accessed in stride-1 pattern

m Instructions:
" Temporal: cycle through loop repeatedly
= Spatial: reference instructions in sequence

19

University of Washington

Example: Locality?

sum = 0;

for (1 = 0; 1 < n; i++)
sum += a[i];

return sum;

m Data:
= Temporal: sumreferenced in each iteration
= Spatial: array a[] accessed in stride-1 pattern

m Instructions:
" Temporal: cycle through loop repeatedly

= Spatial: reference instructions in sequence

m Being able to assess the locality of code is a crucial skill
for a programmer

20

University of Washington

Locality Example #1

int sum _array rows(int a[M] [N])

{
int i, j, sum = 0; al0][0] a[0][1] a[0][2] a[O][3]
a[1][0] a[1]l1] a[1][2] a[1][3]
for (i = 0; 1 < M; i++) a[2][0] a[2][1] a[2][2] a[2][3]

for (j = 0; j < N; j++)
sum += af[i][]];
return sum;

21

University of Washington

Locality Example #1

int sum array rows(int a[M] [N])
{
int 1, j, sum = 0; alo][o] a[o](1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
for (1 = 0; i < M; i++4) a[2][0] a[2][1] a[2][2] a[2][3]
for (j = 0; j < N; j++)
sum += af[i][]];
return sum;

+a[0][0]
+afo][1]
:af0][2]
+a[0][3]
: a[1][0]
ra[1][1]
+a[1][2]
: a[1][3]
: a[2][0]
+af2][1]
raf2][2]
12: a[2][3]

O O NOOULLE, WN R

[
= O

stride-1

22

University of Washington

Locality Example #2

int sum array cols(int a[M] [N])

{
int i, j, sum = 0; a[o][o] a[o][1] a[0][2] a[0][3]
a[1]l0] a[1][1] a[1][2] a[1][3]
for (3 = 0; j < N; j++) al2]l0] a[2][1] a[2][2] a[2][3]

for (i = 0; i < M; i++)
sum += a[i] []j]-
return sum;

23

University of Washington

Locality Example #2

int sum array cols(int a[M] [N])
{
int i, j, sum = 0; al0]l0] a[o][1] a[o]l2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
for (j = 0; j < N; j++) a[2]l0] a[2][1] a[2][2] a[2][3]
for (1 = 0; 1 < M; i++)
sum += a[i] []];
return sum;

: a[0][0]
- a[1][0]
: a[2][0]
:a[o][1]
ra[1][1]
raf2][1]
:a[0][2]
ra[1][2]
:a[2][2]
:a[0][3]
ra[1][3]
12: a[2]([3]

O O NOOULLE, WN R

[
= O

stride-N

24

University of Washington

Locality Example #3

int sum array 3d(int a[M] [N] [N])
{

int i, j, k, sum = 0;

for (1 = 0; 1 < N; i++)
for (j = 0; j < N; j++)
for (k = 0; k < M; k++)
sum += a[k][1][]];
return sum;

}

m What is wrong with this code?
m How can it be fixed?

25

University of Washington

Important questions about $

m When we copy a block of data from main memory to the
cache, where exactly should we put it?

m How can we tell if a word is already in the cache, or if it
has to be fetched from main memory first?

m Eventually, the small cache memory might fill up. To
load a new block from main RAM, we’ d have to replace
one of the existing blocks in the cache... which one?

m How can write operations be handled by the memory

system?

26

University of Washington

Where should we put data in the
cache?

m A direct-mapped cache is the simplest approach: each main memory address maps to exactly one
cache block.

m For example, on the right Memory
isa 16-bylze main memgory Address
and a 4-byte cache (four 0
1-byte blocks). 1

= Memory locations 0, 4, 8 2
and 12 all map to cache 3
block 0. 4

m Addresses 1, 5, 9 and 13 5
map to cache block 1, etc. 6

m How can we compute this 7
mapping? 8

9
10
11
12
13
14
15

27

Ok, we know where to look for data..

m But how do we know if the data is what we want??

28

Adding tags

University of Washington

m We need to add tags to the cache, which supply the rest of the address bits to let us
distinguish between different memory locations that map to the same cache block.

0000
0001
0010
0011
0100
0101
0110
0111
1000

1001
1010
1011
1100
1101
1110
1111

Index
00
01
10
11

Tag

00

?7?

01

01

Data

29

University of Washington

What’s a cache block? (or cache line)

Byte Block (line)
Address Address

0

1

2

T h W o aoo0VONOGOUAWN=O

30

University of Washington

Direct Mapped Caches

m Any problems with them?

31

University of Washington

Disadvantage of direct mapping

m The direct-mapped cache is easy: indices and offsets can be computed with bit operators or simple
arithmetic, because each memory address belongs in exactly one block.

m But, what happens if a Memory
program uses addresses Address

2, 6, 2’ 6) 2’ "‘? 0000

0001
0010
0011
0100
0101
0110 00
0111 01
1000 10
1001 11
1010
1011
1100
1101
1110
1111

Index

32

University of Washington

Associativity

m What if we could store data in any place in the cache?

33

University of Washington

Associativity

m What if we could store data in any place in the cache?
m But that might slow down caches... so we do something in

between.

1-way
8 sets,
1 block each

wn
\lo\m-thﬂO:‘_Dr

direct mapped

Set

0

2-way
4 sets,
2 blocks each

4-way
2 sets,
4 blocks each

Set

8-way
1 set,
8 blocks

Set

fully associative

34

University of Washington

But now how do | know where data goes?

(m-k-n) bits k bits)
n-bit Block
m-bit Address Tag Index | [*— oOffset

35

University of Washington

But now how do | know where data goes?

(m-k-n) bits k bits)
n-bit Block
m-bit Address Tag Index | [*— oOffset

Our example used a 22-block cache with 2" bytes per block. Where would 13
(1101) be stored?

? bits ? bits
?-bits Block
4-bit Address T Offset

36

University of Washington

A puzzle.

m What can you infer from this:
m Cache starts empty

m Access (addr, hit/miss) stream
m (10, miss), (11, hit), (12, miss)

37

University of Washington

General Cache Organization (S, E, B)

E = 2¢ lines per set
A

4 ~N set
s —
o000
line
o000
S = 21 sets < ceoe
0 0000000 0000COCEOGFEOGOEOEOEOEOEOEOOOOOOSOO
o000
\
cache size:
v tag olil 2l -oeer o1 S x E x B data bytes
valid bit N~

B = 2 bytes data block per cache line (the data)

38

University of Washington

* Locate set
CaChe Read * Check if any line in set
has matching tag
E = 2¢ lines per set * Yes + line valid: hit
- A ~ * Locate data starting
r at offset
o000

Address of word:
t bits s bits | b bits

S=Zssets< e aubaed

eeee tag set block

index offset
OO0 000000000000 OCOCEOGEOGEOGEOGEOOO®OO®OSOO
o000
\.
data begins at this offset
v tag 0]1]2] ccc°- B-1
L — _
valid bit ~

B = 2 bytes data block per cache line (the data)

39

University of Washington

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

4 Address of int:
v tag 0j1]2]3|4|5]|6]7 -
t bits 0..01 | 100
v ta ol1]12]|3]|a]l5]|6]7 -
& find set
S = 2% sets <
v tag 011121314)5]6]7

' tag 011|2)3]14]|5]6]7

40

University of Washington

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

v tag 0j1]2]3|4]|5]|6]7

block offset

41

University of Washington

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

v tag 011121314)5]6]7

block offset

int (4 Bytes) is here

No match: old line is evicted and replaced

42

University of Washington

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

tag | ol lolol lolel, NN NANNANAE
tag | ol lolol lolels M ANANAANAE
tag | ol folol lclcl, TS IAANAANAAE

ANAE Wl L1238 45J-s7

:
:

tag

43

University of Washington

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

tag | (ol 1ol 05015 MK NANAAAAE
tag | ol l ol 1olcl, TS IAARAANAE find set
tog | Lol lololololelo) L] L J Lol lolot lolels

INAE W L1238 INAE

QE
QE

tag

44

University of Washington

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

tog | Lol lo 0ol ol lol| (L) L T oLl 0, 1s16],

block offset

45

University of Washington

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

match both

valid? + | match: yes = hit

toe | Lol Lo ol el o [o0| [Ld Ltee 1 Lol o101, 15 0615

block offset

short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

46

Example placement in set-associative
caches

m Where would data from memory byte address 6195 be placed, assuming
the eight-block cache designs below, with 16 bytes per block?

m 6195 in binary is 00...0110000 011 0011.

1-way associativity 2-way associativity 4-way associativity
8 sets, 1 block each 4 sets, 2 blocks each 2 sets, 4 blocks each
Set Set Set

0

1 P T o —

2 1 o o

3

4 2 bl b

S I

6 3 I [N

7

47

University of Washington

Example placement in set-associative
caches

m Where would data from memory byte address 6195 be placed, assuming the eight-block cache
designs below, with 16 bytes per block?

m 6195 in binary is 00...0110000 011 0011.
m Each block has 16 bytes, so the lowest 4 bits are the block offset.

m For the 1-way cache, the next three bits (011) are the set index.

For the 2-way cache, the next two bits (11) are the set index.
For the 4-way cache, the next one bit (1) is the set index.

m The data may go in any block, shown in green, within the correct set.

1-way associativity 2-way associativity 4-way associativity
8 sets, 1 block each 4 sets, 2 blocks each 2 sets, 4 blocks each
Set Set Set

0] l

1 | P T o —

2 0 ...

2 H T 1 °[—/

4 2 b

S 1

6 3

7

48

University of Washington

Block replacement

m Any empty block in the correct set may be used for storing data.
m If there are no empty blocks, which one should we replace?

1-way associativity 2-way associativity 4-way associativity
8 sets, 1 block each 4 sets, 2 blocks each 2 sets, 4 blocks each
Set Set Set

| l

1| | Y e I O —

2 N o

3

4 2 b

5 1

6 3

7

49

University of Washington

Block replacement

= Any empty block in the correct set may be used for storing data.

m If there are no empty blocks, the cache controller will attempt to replace the least recently
used block, just like before.

m For highly associative caches, it’ s expensive to keep track of what’s really the least recently
used block, so some approximations are used. We won’ t get into the details.

1-way associativity 2-way associativity 4-way associativity
8 sets, 1 block each 4 sets, 2 blocks each 2 sets, 4 blocks each
Set Set Set

| l

1| | Y e I O —

2 N o

3

4 2 b

5 1

6 3

7

50

University of Washington

Another puzzle.

m What can you infer from this:
m Cache starts empty

m Access (addr, hit/miss) stream
m (10, miss); (12, miss); (10, miss)

51

University of Washington

Types of Cache Misses

m Cold (compulsory) miss
= Qccurs on first access to a block

52

University of Washington

Types of Cache Misses

m Cold (compulsory) miss
= Qccurs on first access to a block

m Conflict miss

= Most hardware caches limit blocks to a small subset (sometimes just one)
of the available cache slots

= if one (e.g., block i must be placed in slot (i mod size)), direct-mapped

= if more than one, n-way set-associative (where n is a power of 2)

® Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot

= e.g., referencing blocks 0, 8, 0, 8, ... would miss every time=

53

University of Washington

Types of Cache Misses

m Cold (compulsory) miss
= Qccurs on first access to a block

m Conflict miss

= Most hardware caches limit blocks to a small subset (sometimes just one)
of the available cache slots

= if one (e.g., block i must be placed in slot (i mod size)), direct-mapped

= if more than one, n-way set-associative (where n is a power of 2)

® Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot

= e.g., referencing blocks 0, 8, 0, 8, ... would miss every time
m Capacity miss

= QOccurs when the set of active cache blocks (the working set)
is larger than the cache (just won’t fit)

54

University of Washington

What about writes?

m Multiple copies of data exist:
= L1, L2, Main Memory, Disk
m What to do on a write-hit?

= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)

= How do we know when to write?

m What to do on a write-miss?

= Write-allocate (load into cache, then write)
= When is this useful?
= No-write-allocate (writes immediately to memory)

m Typical
= Write-through + No-write-allocate
= \Write-back + Write-allocate

55

University of Washington

Memory Hierarchies

m Some fundamental and enduring properties of hardware and
software systems:

= Faster storage technologies almost always cost more per byte and have
lower capacity

" The gaps between memory technology speeds are widening
= True for: registers ¢ cache, cache <> DRAM, DRAM & disk, etc.

= Well-written programs tend to exhibit good locality

m These properties complement each other beautifully

m They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

56

University of Washington

An Example Memory Hierarchy

A
LO:
registers CPU registers hold words retrieved from L1 cache
L1: on-chip L1
SmaIIer, cache (SRAM) L1 cache holds cache lines retrieved from L2 cache
faster,
costlier L2: off-chip L2
er byte
P y cache (SRAM) L2 cache holds cache lines retrieved
from main memory
L3:

Larger, main memory
slower (DRAM) Main memory holds disk blocks

! retrieved from local disks
cheaper
per byte L4: local secondary storage _ _

(Iocal diSkS) Local disks hold files
retrieved from disks on
remote network servers
L5 remote secondary storage
. (distributed file systems, web servers)

57

University of Washington

Typical Memory Hierarchy (Intel Core i7)

A
LO: CPU registers (optimized by complier)
registers
L1: on-chip L1 8-way associative in Intel Core i7
Smaller, cache (SRAM)
faster,
costlier .
per byte L2: Off'Ch'p L2 8-way associative in Intel Core i7
cache (SRAM)
L L3: Oﬁ-ChiR cache L3 shared 16-way associative in Intel Core i7
;’:\rger, by multiple cores (SRAM)
slower,

cheaper L4: main memory
per byte (DRAM)
L5: local secondary storage
(local disks)

L6: remote secondary storage
(distributed file systems, web servers)

58

University of Washington

Examples of Caching in the Hierarchy

Cache Type What is Cached? | Where is it Cached? I(.s;:lr;?)/ Managed By
Registers 4-byte words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware

L1 cache 64-bytes block On-Chip L1 1 | Hardware

L2 cache 64-bytes block Off-Chip L2 10 | Hardware
Virtual Memory 4-KB page Main memory 100 | Hardware+0S
Buffer cache Parts of files Main memory 100 | OS

Network cache Parts of files Local disk 10,000,000 | File system client
Browser cache Web pages Local disk 10,000,000 | Web browser
Web cache Web pages Remote server disks 1,000,000,000 | Web server

59

University of Washington

Memory Hierarchy: Core 2 Duo Not drawn to scale

L1/L2 cache: 64 B blocks

~4 MB ~4 GB ~500 GB
L1
I-cache
Lz . Main
32 KB i Memor
cache Yy
CPU | Reg =
D-cache
Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles

Latency: 3 cycles 14 cycles 100 cycles millions D i S k

60

University of Washington

Where else is caching used?

61

University of Washington

Software Caches are More Flexible

m Examples

= File system buffer caches, web browser caches, etc.

m Some design differences
= Almost always fully-associative
= 50, no placement restrictions
= index structures like hash tables are common (for placement)
= Often use complex replacement policies
= misses are very expensive when disk or network involved
= worth thousands of cycles to avoid them
" Not necessarily constrained to single “block” transfers

= may fetch or write-back in larger units, opportunistically

62

Optimizations for the Memory Hierarchy

m Write code that has locality
= Spatial: access data contiguously
= Temporal: make sure access to the same data is not too far apart in
time
m How to achieve?
= Proper choice of algorithm
= Loop transformations

m Cache versus register-level optimization:
" |n both cases locality desirable

= Register space much smaller
+ requires scalar replacement to exploit temporal locality

= Register level optimizations include exhibiting instruction level
parallelism (conflicts with locality)

63

University of Washington

Example: Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; 1 < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k]*b[k*n + j];

[T

I
*

64

University of Washington

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
" Cache size C << n (much smaller than n)

m First iteration: r ~

" n/8+n=9n/8 misses
(omitting matrix c)

1
*

= Afterwards in cache: . ——
(schematic)

Il
*

8 wide
65

University of Washington

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache block = 8 doubles
" Cache size C << n (much smaller than n)

m Other iterations: r

n
A
= Again: . .
n/8 + n =9n/8 misses

Il
*

(omitting matrix c)

8 wide

m Total misses:
" 9n/8 * n2=(9/8) * n3

66

University of Washington

Blocked Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; 1 < n; i+=B)
for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (i1l = i; il < i+B; i++)
for (j1 = j; jl < j+B; j++)
for (k1 = k; k1l < k+B; k++)
c[il*n + jl] += a[il*n + k1l]*b[kl*n + jl];

j1
Cc a b Cc
= K +
] i1 [

Block size Bx B

67

University of Washington

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
" Four blocks M fitinto cache: 4B2< C

. . . n/B blocks
m First (block) iteration: A
= B2/8 misses for each block M]]]
" 2n/B * BY/8 = nB/4 _ —
(omitting matrix c) - *]
= Afterwards in cache N 1T Block size B x B
(schematic)

I
*

68

University of Washington

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles

= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

B block
m Other (block) iterations: n/B blocks

_AL
' Y
®m Same as first iteration
O RN
Xk

= 2n/B * B2/8 =nB/4

m Total misses:
" nB/4 * (n/B)? =n3/(4B)

Block size Bx B

69

University of Washington

Summary

m No blocking: (9/8) * n3

m Blocking: 1/(4B) * n3

m IfB=8 differenceis4*8*9/8 =36x
m If B=16 differenceis4 *16 *9 /8 =72x

m Suggests largest possible block size B, but limit 4B% < C!
(can possibly be relaxed a bit, but there is a limit for B)
m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly

70

