
University of Washington

Instruction Set Architectures
!  ISAs
!  Brief history of processors and architectures
!  C, assembly, machine code
!  Assembly basics: registers, operands, move

instructions

1

University of Washington

What should the HW/SW interface
contain?

2

University of Washington

The General ISA

PC

...

Registers

Instructions

Memory

Data

CPU

University of Washington

General ISA Design Decisions
!  Instructions

!  What instructions are available? What do they do?
!  How are then encoded?

!  Registers
!  How many registers are there?
!  How wide are they?

!  Memory
!  How do you specify a memory location?

University of Washington

HW/SW Interface: Code / Compile / Run
Times

Hardware
User

Program
in C

Assembler C
Compiler

.exe
File

Code Time Compile Time Run Time

5

What makes programs run fast?

University of Washington

Executing Programs Fast!
!  The time required to execute a program depends on:

!  The program (as written in C, for instance)
!  The compiler: what set of assembler instructions it translates the C

program into
!  The ISA: what set of instructions it made available to the compiler
!  The hardware implementation: how much time it takes to execute

an instruction

!  There is a complicated interaction among these

University of Washington

Intel x86 Processors
!  Totally dominate the server/laptop market

!  Evolutionary design
"  Backwards compatible up until 8086, introduced in 1978
"  Added more features as time goes on

!  Complex instruction set computer (CISC)
"  Many different instructions with many different formats

"  But, only small subset encountered with Linux programs
"  Hard to match performance of Reduced Instruction Set Computers

(RISC)
"  But, Intel has done just that!

7

University of Washington

Intel x86 Evolution: Milestones
 Name Date Transistors MHz

! 8086 1978 29K 5-10
"  First 16-bit processor. Basis for IBM PC & DOS
"  1MB address space

! 386 1985 275K 16-33
"  First 32 bit processor , referred to as IA32
"  Added “flat addressing”
"  Capable of running Unix
"  32-bit Linux/gcc uses no instructions introduced in later models

! Pentium 4F 2005 230M 2800-3800
"  First 64-bit processor
" Meanwhile, Pentium 4s (Netburst arch.) phased out in favor of

“Core” line

8

University of Washington

Intel x86 Processors, contd.

! Machine Evolution
"  486 1989 1.9M
"  Pentium 1993 3.1M
"  Pentium/MMX 1997 4.5M
"  PentiumPro 1995 6.5M
"  Pentium III 1999 8.2M
"  Pentium 4 2001 42M
"  Core 2 Duo 2006 291M

! Added Features
"  Instructions to support multimedia operations

" Parallel operations on 1, 2, and 4-byte data, both integer & FP
"  Instructions to enable more efficient conditional operations

! Linux/GCC Evolution
"  Very limited impact on performance --- mostly came from HW.

9

University of Washington

x86 Clones: Advanced Micro Devices
(AMD)
!  Historically

"  AMD has followed just behind Intel
"  A little bit slower, a lot cheaper

!  Then
"  Recruited top circuit designers from Digital Equipment and other

downward trending companies
"  Built Opteron: tough competitor to Pentium 4
"  Developed x86-64, their own extension to 64 bits

!  Recently
"  Intel much quicker with dual core design
"  Intel currently far ahead in performance
"  em64t backwards compatible to x86-64

10

University of Washington

Intel’s 64-Bit
!  Intel Attempted Radical Shift from IA32 to IA64

"  Totally different architecture (Itanium)
"  Executes IA32 code only as legacy
"  Performance disappointing

!  AMD Stepped in with Evolutionary Solution
"  x86-64 (now called “AMD64”)

!  Intel Felt Obligated to Focus on IA64
"  Hard to admit mistake or that AMD is better

!  2004: Intel Announces EM64T extension to IA32
"  Extended Memory 64-bit Technology
"  Almost identical to x86-64!

!  Meanwhile: EM64t well introduced,
however, still often not used by OS, programs

11

University of Washington

Our Coverage in 351
!  IA32

"  The traditional x86

!  x86-64/EM64T
"  The emerging standard – we’ll just touch on its major additions

12

University of Washington

Definitions
!  Architecture: (also instruction set architecture or ISA)

The parts of a processor design that one needs to
understand to write assembly code (“what is directly
visible to SW”)

!  Microarchitecture: Implementation of the architecture

!  Is cache size “architecture”?
!  How about core frequency?
!  And number of registers?

13

University of Washington

CPU

Assembly Programmer’s View

!  Programmer-Visible State
"  PC: Program counter

"  Address of next instruction
"  Called “EIP” (IA32) or “RIP” (x86-64)

"  Register file
"  Heavily used program data

"  Condition codes
"  Store status information about most

recent arithmetic operation
"  Used for conditional branching

PC Registers

Memory

Object Code
Program Data
OS Data

Addresses

Data

Instructions

Stack

Condition
Codes

" Memory
"  Byte addressable array
"  Code, user data, (some) OS data
"  Includes stack used to support

procedures (we’ll come back to that)

University of Washington

text

text

binar
y

binar
y

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
"  Code in files p1.c p2.c!
"  Compile with command: gcc -O p1.c p2.c -o p!

" Use optimizations (-O)
" Put resulting binary in file p

15

University of Washington

Compiling Into Assembly
C Code
int sum(int x, int y)
{
 int t = x+y;
 return t;
}

Generated IA32 Assembly
sum:

 pushl %ebp
 movl %esp,%ebp
 movl 12(%ebp),%eax
 addl 8(%ebp),%eax
 movl %ebp,%esp
 popl %ebp
 ret

Obtain with command

gcc -O -S code.c

Produces file code.s

16

University of Washington

Three Kinds of Instructions
!  Perform arithmetic function on register or memory

data

!  Transfer data between memory and register
"  Load data from memory into register
"  Store register data into memory

!  Transfer control (control flow)
"  Unconditional jumps to/from procedures
"  Conditional branches

17

University of Washington

Assembly Characteristics: Data
Types

!  “Integer” data of 1, 2, or 4 bytes
"  Data values
"  Addresses (untyped pointers)

!  Floating point data of 4, 8, or 10 bytes

!  No aggregate types such as arrays or structures
"  Just contiguously allocated bytes in memory

18

University of Washington

Code for sum
0x401040 <sum>:

 0x55
 0x89
 0xe5
 0x8b
 0x45
 0x0c
 0x03
 0x45
 0x08
 0x89
 0xec
 0x5d
 0xc3

Object Code
!  Assembler

"  Translates .s into .o
"  Binary encoding of each instruction
"  Nearly-complete image of executable

code
"  Missing linkages between code in

different files

!  Linker
"  Resolves references between files
"  Combines with static run-time libraries

"  E.g., code for malloc, printf
"  Some libraries are dynamically linked

"  Linking occurs when program begins
execution

•  Total of 13
bytes

•  Each
instruction 1,
2, or 3 bytes

•  Starts at
address
0x401040

19

University of Washington

Example
! C Code

"  Add two signed integers

! Assembly
"  Add 2 4-byte integers

"  “Long” words in GCC speak
" Same instruction whether

signed or unsigned
" Operands:

x: Register %eax
y: Memory M[%ebp+8]
t: Register %eax

– Return function value in
%eax

! Object Code
"  3-byte instruction
"  Stored at address 0x401046

int t = x+y;

addl 8(%ebp),%eax

0x401046: 03 45 08

Similar to expression:
 x += y

More precisely:
 int eax;
 int *ebp;
 eax += ebp[2]

20

University of Washington

Disassembled
00401040 <_sum>:
 0: 55 push %ebp
 1: 89 e5 mov %esp,%ebp
 3: 8b 45 0c mov 0xc(%ebp),%eax
 6: 03 45 08 add 0x8(%ebp),%eax
 9: 89 ec mov %ebp,%esp
 b: 5d pop %ebp
 c: c3 ret
 d: 8d 76 00 lea 0x0(%esi),%esi

Disassembling Object Code

!  Disassembler
objdump -d p
"  Useful tool for examining object code
"  Analyzes bit pattern of series of instructions
"  Produces approximate rendition of assembly code
"  Can be run on either a.out (complete executable) or .o file

21

University of Washington

Disassembled
0x401040 <sum>: push %ebp
0x401041 <sum+1>: mov %esp,%ebp
0x401043 <sum+3>: mov 0xc(%ebp),%eax
0x401046 <sum+6>: add 0x8(%ebp),%eax
0x401049 <sum+9>: mov %ebp,%esp
0x40104b <sum+11>: pop %ebp
0x40104c <sum+12>: ret
0x40104d <sum+13>: lea 0x0(%esi),%esi

Alternate Disassembly

!  Within gdb Debugger
gdb p
disassemble sum
"  Disassemble procedure
x/13b sum
"  Examine the 13 bytes starting at sum

Object
0x401040:

 0x55
 0x89
 0xe5
 0x8b
 0x45
 0x0c
 0x03
 0x45
 0x08
 0x89
 0xec
 0x5d
 0xc3

22

University of Washington

What Can be Disassembled?

!  Anything that can be interpreted as executable code
!  Disassembler examines bytes and reconstructs

assembly source

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:
30001000: 55 push %ebp
30001001: 8b ec mov %esp,%ebp
30001003: 6a ff push $0xffffffff
30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91

23

University of Washington

Integer Registers (IA32)
%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

ge
ne

ra
l p

ur
po

se

24

University of Washington

Integer Registers (IA32)
%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source
index

destination
index

stack
pointer
base
pointer

Origin
(mostly obsolete)

25

University of Washington

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

x86-64 Integer Registers

"  Twice the number of registers
"  Accessible as 8, 16, 32, 64 bits

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

University of Washington

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

x86-64 Integer Registers:
Usage Conventions

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15 Callee saved Callee saved

Callee saved

Callee saved

Callee saved

Caller saved

Callee saved

Stack pointer

Caller Saved

Return value

Argument #4

Argument #1

Argument #3

Argument #2

Argument #6

Argument #5

