
University of Washington

Today: Floats!

1

University of Washington

Today Topics: Floating Point
!  Background: Fractional binary numbers
!  IEEE floating point standard: Definition
!  Example and properties
!  Rounding, addition, multiplication
!  Floating point in C
!  Summary

2

University of Washington

Fractional binary numbers
!  What is 1011.101?

3

University of Washington

• • •!

b–1!.!

Fractional Binary Numbers

!  Representation
!  Bits to right of “binary point” represent fractional powers of 2
!  Represents rational number:

bi!bi–1! b2! b1! b0! b–2! b–3! b–j!• • •!• • •!
1!
2!
4!

2i–1
!

2i!

• • •!

1/2!
1/4!
1/8!

2–j!

4

University of Washington

Fractional Binary Numbers:
Examples
! Value Representation

5 and 3/4
2 and 7/8
63/64

! Observations
!  Divide by 2 by shifting right
! Multiply by 2 by shifting left
!  Numbers of form 0.111111…2 are just below 1.0

!  1/2 + 1/4 + 1/8 + … + 1/2i + … ! 1.0
! Use notation 1.0 – "

101.112
10.1112
0.1111112

5

University of Washington

Representable Numbers
!  Limitation

!  Can only exactly represent numbers of the form x/2k
! Other rational numbers have repeating bit representations

!  Value Representation
1/3 0.0101010101[01]…2
1/5 0.001100110011[0011]…2
1/10 0.0001100110011[0011]…2

6

University of Washington

Fixed Point Representation
"  float ! 32 bits; double ! 64 bits
"  We might try representing fractional binary numbers

by picking a fixed place for an implied binary point
"  “fixed point binary numbers”

"  Let's do that, using 8 bit floating point numbers as an example
"  #1: the binary point is between bits 2 and 3

 b7 b6 b5b4 b3 [.] b2 b1 b0

"  #2: the binary point is between bits 4 and 5
 b7 b6 b5 [.] b4 b3 b2 b1 b0

"  The position of the binary point affects the range and precision
-  range: difference between the largest and smallest representable

numbers
-  precision: smallest possible difference between any two numbers

University of Washington

Fixed Point Pros and Cons

"  Pros
"  It's simple. The same hardware that does integer arithmetic can do

fixed point arithmetic
-  In fact, the programmer can use ints with an implicit fixed point

"  E.g., int balance; // number of pennies in the account
-  ints are just fixed point numbers with the binary point to the right of

b0

"  Cons
"  There is no good way to pick where the fixed point should be

-  Sometimes you need range, sometimes you need precision. The
more you have of one, the less of the other

University of Washington

What else could we do?

9

University of Washington

IEEE Floating Point

!  Fixing fixed point: analogous to scientific notation
!  Not 12000000 but 1.2 x 10^7; not 0.0000012 but 1.2 x 10^-6

!  IEEE Standard 754
!  Established in 1985 as uniform standard for floating point

arithmetic
!  Before that, many idiosyncratic formats

!  Supported by all major CPUs

!  Driven by numerical concerns
!  Nice standards for rounding, overflow, underflow
!  Hard to make fast in hardware

!  Numerical analysts predominated over hardware designers in
defining standard

10

University of Washington

"  Numerical Form:
 (–1)s M 2E

"  Sign bit s determines whether number is negative or positive
"  Significand (mantissa) M normally a fractional value in range

[1.0,2.0).
"  Exponent E weights value by power of two

"  Encoding
"  MSB s is sign bit s
"  frac field encodes M (but is not equal to M)
"  exp field encodes E (but is not equal to E)

Floating Point Representation

s exp frac

11

University of Washington

Precisions
!  Single precision: 32 bits

!  Double precision: 64 bits

!  Extended precision: 80 bits (Intel only)

s exp frac

s exp frac

s exp frac

1 8 23

1 11 52

1 15 63 or 64

12

University of Washington

Normalization and Special
Values

"  “Normalized” means mantissa has form 1.xxxxx
"  0.011 x 25 and 1.1 x 23 represent the same number, but the latter

makes better use of the available bits
"  Since we know the mantissa starts with a 1, don't bother to store it

"  How do we do 0? How about 1.0/0.0?

13

University of Washington

Normalization and Special
Values

"  “Normalized” means mantissa has form 1.xxxxx
"  0.011 x 25 and 1.1 x 23 represent the same number, but the latter

makes better use of the available bits
"  Since we know the mantissa starts with a 1, don't bother to store it

"  Special values:

"  The float value 00...0 represents zero
"  If the exp == 11...1 and the mantissa == 00...0, it represents #$
"  E.g., 10.0 / 0.0 ! #$

" If the exp == 11...1 and the mantissa != 00...0, it represents NaN
"  “Not a Number”
"  Results from operations with undefined result

-  E.g., 0 * #$

14

University of Washington

How do we do operations?
!  Is representation exact?
!  How are the operations carried out?

15

University of Washington

Floating Point Operations: Basic Idea

!  x +f y = Round(x + y)

!  x *f y = Round(x * y)

!  Basic idea
!  First compute exact result
! Make it fit into desired precision

! Possibly overflow if exponent too large
! Possibly round to fit into frac

16

University of Washington

Floating Point
Multiplication
!(–1)s1 M1 2E1

 * (–1)s2 M2 2E2

!  Exact Result: (–1)s M 2E
!  Sign s: s1 ^ s2
!  Significand M: M1 * M2
!  Exponent E: E1 + E2

!  Fixing
!  If M " 2, shift M right, increment E
!  If E out of range, overflow
!  Round M to fit frac precision

!  Implementation
!  What is hardest?

17

University of Washington

Floating Point Addition
 (–1)s1 M1 2E1 + (-1)s2 M2 2E2

Assume E1 > E2

!  Exact Result: (–1)s M 2E
!  Sign s, significand M:

!  Result of signed align & add
!  Exponent E: E1

!  Fixing
!  If M ! 2, shift M right, increment E
!  if M < 1, shift M left k positions, decrement E by k
!  Overflow if E out of range
!  Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+

(–1)s M

18

University of Washington

Hmm… if we round at every
operation…

19

University of Washington

Mathematical Properties of FP
Operations
!  Not really associative or distributive due to rounding
!  Infinities and NaNs cause issues
!  Overflow and infinity

20

University of Washington

Floating Point in C
!  C Guarantees Two Levels

float single precision
double double precision

!  Conversions/Casting
!  Casting between int, float, and double changes bit

representation
!  Double/float ! int

!  Truncates fractional part
!  Like rounding toward zero
!  Not defined when out of range or NaN: Generally sets to TMin

!  int ! double
!  Exact conversion, why?

!  int ! float
!  Will round according to rounding mode 21

University of Washington

Memory Referencing Bug (Revisited)

22

double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

Saved State

d7 … d4

d3 … d0

a[1]

a[0] 0

1

2

3

4

Location
accessed by fun
(i)

Explanation:

University of Washington

Floating Point and the Programmer
#include <stdio.h>

int main(int argc, char* argv[]) {

 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for (i=0; i<10; i++) {
 f2 += 1.0/10.0;
 }

 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %10.8f\n", f1);
 printf("f2 = %10.8f\n\n", f2);

 f1 = 1E30;
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

 return 0;
}

University of Washington

Floating Point and the Programmer
#include <stdio.h>

int main(int argc, char* argv[]) {

 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for (i=0; i<10; i++) {
 f2 += 1.0/10.0;
 }

 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %10.8f\n", f1);
 printf("f2 = %10.8f\n\n", f2);

 f1 = 1E30;
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

 return 0;
}

$./a.out
0x3f800000 0x3f800001
f1 = 1.000000000
f2 = 1.000000119

f1 == f3? yes

University of Washington

Summary
"  As with integers, floats suffer from the fixed number of
bits
 available to represent them

"  Can get overflow/underflow, just like ints

"  Some “simple fractions” have no exact representation

"  E.g., 0.1
"  Can also lose precision, unlike ints

"  “Every operation gets a slightly wrong result”

"  Mathematically equivalent ways of writing an expression
may
 compute differing results

"  NEVER test floating point values for equality! 25

