Today: Floats!

University of Washington

Today Topics: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101?

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $b_k \ 2^k$

Fractional Binary Numbers: Examples

■ Value Representation

101.11, 5 and 3/4 2 and 7/8 10.111, 63/64 0.111111,

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Representable Numbers

Limitation

- Can only exactly represent numbers of the form x/2^k
- Other rational numbers have repeating bit representations

Value	Representation
1/3	$0.0101010101[01]_{\cdots_2}$
1/5	$0.001100110011[0011]_{\cdots_2}$
1/10	0.0001100110011[0011]2

Fixed Point Representation

- float → 32 bits; double → 64 bits
- We might try representing fractional binary numbers by picking a fixed place for an implied binary point
 - "fixed point binary numbers"
- Let's do that, using 8 bit floating point numbers as an example
 - #1: the binary point is between bits 2 and 3 $b_7 b_6 b_5 b_4 b_3$ [.] $b_2 b_1 b_0$
 - #2: the binary point is between bits 4 and 5
 b₇ b₆ b₅ [.] b₄ b₃ b₂ b₁ b₀
 - The position of the binary point affects the <u>range</u> and <u>precision</u>
 - range: difference between the largest and smallest representable numbers
 - precision: smallest possible difference between any two numbers

University of Washington

Fixed Point Pros and Cons

- Pros
 - It's simple. The same hardware that does integer arithmetic can do fixed point arithmetic
 - In fact, the programmer can use ints with an implicit fixed point
 - E.g., int balance; // number of pennies in the account
 - ints are just fixed point numbers with the binary point to the right of \mathbf{b}_0

Cons

- There is no good way to pick where the fixed point should be
 - Sometimes you need range, sometimes you need precision. The more you have of one, the less of the other

What else could we do?

University of Washington

IEEE Floating Point

- Fixing fixed point: analogous to scientific notation
 - Not 12000000 but 1.2 x 10⁷; not 0.0000012 but 1.2 x 10⁶-6
- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB s is sign bit s
 - frac field encodes M (but is not equal to M)
 - exp field encodes E (but is not equal to E)

Precisions

■ Single precision: 32 bits

■ Double precision: 64 bits

Extended precision: 80 bits (Intel only)

s	ехр	frac
1	15	63 or 64

Normalization and Special Values

- "Normalized" means mantissa has form 1.xxxxx
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, don't bother to store it
- How do we do 0? How about 1.0/0.0?

13

University of Washington

Normalization and Special Values

- "Normalized" means mantissa has form 1.xxxxx
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, don't bother to store it
- Special values:
 - The float value 00...0 represents zero
 - If the exp == 11...1 and the mantissa == 00...0, it represents ∞
 - E.g., $10.0 / 0.0 \rightarrow \infty$

•If the exp == 11...1 and the mantissa != 00...0, it represents NaN

- · "Not a Number"
- Results from operations with undefined result
 - E.g., 0 * ∞

How do we do operations?

- Is representation exact?
- How are the operations carried out?

15

University of Washington

Floating Point Operations: Basic Idea

$$\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$$

$$\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$$

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

University of Washington

Floating Point Multiplication

 $(-1)^{s1} M1 2^{E1} * (-1)^{s2} M2 2^{E2}$

- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 Significand M: M1 * M2
 Exponent E: E1 + E2

Fixing

- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

What is hardest?

University of Washington

E1-E2-

Floating Point Addition

$$(-1)^{s1}$$
 M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2}
Assume $E1 > E2$

■ Exact Result: (-1)^s M 2^E

(-1)^{s1} M1

- Sign s, significand M:
 - Result of signed align & add
- Exponent E: E1

Fixing

- If $M \ge 2$, shift M right, increment E
- if *M* < 1, shift *M* left *k* positions, decrement *E* by *k*
- Overflow if E out of range
- Round M to fit frac precision

Hmm... if we round at every operation...

19

University of Washington

Mathematical Properties of FP Operations

- Not really associative or distributive due to rounding
- Infinities and NaNs cause issues
- Overflow and infinity

Floating Point in C

C Guarantees Two Levels

float single precision double double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- Double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int → double
 - Exact conversion, why?
- int → float
 - Will round according to rounding mode

University of Washingtor

21

Memory Referencing Bug (Revisited)

```
double fun(int i)
{
  volatile double d[1] = {3.14};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
}
```

```
fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault
```

Explanation: Saved State

Floating Point and the Programmer

```
#include <stdio.h>
int main(int argc, char* argv[]) {
    float f1 = 1.0;
    float f2 = 0.0;
    int i;
    for ( i=0; i<10; i++ ) {
        f2 += 1.0/10.0;
    }
    printf("0x%08x     0x%08x\n", *(int*)&f1, *(int*)&f2);
    printf("f1 = %10.8f\n", f1);
    printf("f2 = %10.8f\n\n", f2);
    f1 = 1E30;
    f2 = 1E-30;
    float f3 = f1 + f2;
    printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
    return 0;
}</pre>
```

University of Washington

Floating Point and the Programmer

```
#include <stdio.h>
int main(int argc, char* argv[]) {
 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for ( i=0; i<10; i++ ) {
   f2 += 1.0/10.0;
                                                         $ ./a.out
 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
                                                         0x3f800000 0x3f800001
 printf("f1 = %10.8f\n", f1);
                                                         f1 = 1.000000000
 printf("f2 = %10.8f\n\n", f2);
                                                         f2 = 1.000000119
 f1 = 1E30;
                                                         f1 == f3? yes
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf ("f1 == f3? s\n", f1 == f3 ? "yes" : "no" );
 return 0;
}
```

Summary

• As with integers, floats suffer from the fixed number of bits

available to represent them

- Can get overflow/underflow, just like ints
- Some "simple fractions" have no exact representation
 - E.g., 0.1
- · Can also lose precision, unlike ints
 - "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may

compute differing results

NEVER test floating point values for equality!