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Today Topics: Floating Point 
!  Background: Fractional binary numbers 
!  IEEE floating point standard: Definition 
!  Example and properties 
!  Rounding, addition, multiplication 
!  Floating point in C 
!  Summary 
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Fractional binary numbers 
!  What is 1011.101? 
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• • •!
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Fractional Binary Numbers 

!  Representation 
!  Bits to right of “binary point” represent fractional powers of 2 
!  Represents rational number: 

bi!bi–1! b2! b1! b0! b–2! b–3! b–j!• • •!• • •!
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2i–1
!
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Fractional Binary Numbers: 
Examples 
! Value  Representation 

5 and 3/4   
2 and 7/8   
63/64   

! Observations 
!  Divide by 2 by shifting right 
! Multiply by 2 by shifting left 
!  Numbers of form 0.111111…2 are just below 1.0 

!  1/2 + 1/4 + 1/8 + … + 1/2i + … ! 1.0 
! Use notation 1.0 – " 

101.112 
10.1112 
0.1111112 
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Representable Numbers 
!  Limitation 

!  Can only exactly represent numbers of the form x/2k 
! Other rational numbers have repeating bit representations 

!  Value  Representation 
1/3  0.0101010101[01]…2 
1/5  0.001100110011[0011]…2 
1/10  0.0001100110011[0011]…2 
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Fixed Point Representation 
"  float ! 32 bits;  double ! 64 bits 
"  We might try representing fractional binary numbers 

by picking a fixed place for an implied binary point 
"  “fixed point binary numbers” 

"  Let's do that, using 8 bit floating point numbers as an example 
"  #1: the binary point is between bits 2 and 3 

    b7 b6 b5b4 b3  [.] b2 b1 b0 

"  #2: the binary point is between bits 4 and 5 
    b7 b6 b5 [.] b4 b3 b2 b1 b0 

"  The position of the binary point affects the range and precision 
-  range: difference between the largest and smallest representable 

numbers 
-  precision: smallest possible difference between any two numbers 

University of Washington 

Fixed Point Pros and Cons 

"  Pros 
"  It's simple.  The same hardware that does integer arithmetic can do 

fixed point arithmetic 
-  In fact, the programmer can use ints with an implicit fixed point 

"  E.g., int balance;  // number of pennies in the account 
-  ints are just fixed point numbers with the binary point to the right of 

b0 

"  Cons 
"  There is no good way to pick where the fixed point should be 

-  Sometimes you need range, sometimes you need precision.  The 
more you have of one, the less of the other 
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What else could we do? 
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IEEE Floating Point 

!  Fixing fixed point: analogous to scientific notation 
!  Not 12000000 but 1.2 x 10^7; not 0.0000012 but 1.2 x 10^-6 

!  IEEE Standard 754 
!  Established in 1985 as uniform standard for floating point 

arithmetic 
!  Before that, many idiosyncratic formats 

!  Supported by all major CPUs 

!  Driven by numerical concerns 
!  Nice standards for rounding, overflow, underflow 
!  Hard to make fast in hardware 

!  Numerical analysts predominated over hardware designers in 
defining standard 
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"  Numerical Form:  
   (–1)s M  2E 

"  Sign bit s determines whether number is negative or positive 
"  Significand (mantissa) M  normally a fractional value in range 

[1.0,2.0). 
"  Exponent E weights value by power of two 

"  Encoding 
"  MSB s is sign bit s 
"  frac field encodes M (but is not equal to M) 
"  exp field encodes E (but is not equal to E) 

Floating Point Representation 

s exp frac 
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Precisions 
!  Single precision: 32 bits 

!  Double precision: 64 bits 

!  Extended precision: 80 bits (Intel only) 

s exp frac 

s exp frac 

s exp frac 

1 8 23 

1 11 52 

1 15 63 or 64 
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Normalization and Special 
Values 

"  “Normalized” means mantissa has form 1.xxxxx 
"  0.011 x 25 and 1.1 x 23 represent the same number, but the latter 

makes better use of the available bits 
"  Since we know the mantissa starts with a 1, don't bother to store it 

"  How do we do 0? How about 1.0/0.0? 
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Normalization and Special 
Values 

"  “Normalized” means mantissa has form 1.xxxxx 
"  0.011 x 25 and 1.1 x 23 represent the same number, but the latter 

makes better use of the available bits 
"  Since we know the mantissa starts with a 1, don't bother to store it 

"  Special values: 

"  The float value 00...0 represents zero 
"  If the exp == 11...1 and the mantissa == 00...0, it represents #$
"  E.g., 10.0 / 0.0 ! #$

" If the exp == 11...1 and the mantissa != 00...0, it represents NaN 
"  “Not a Number” 
"  Results from operations with undefined result 

-  E.g., 0 * #$

14 



University of Washington 

How do we do operations? 
!  Is representation exact? 
!  How are the operations carried out? 
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Floating Point Operations: Basic Idea 

!  x +f y = Round(x + y) 

!  x *f y = Round(x * y) 

!  Basic idea 
!  First compute exact result 
! Make it fit into desired precision 

! Possibly overflow if exponent too large 
! Possibly round to fit into frac 
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Floating Point 
Multiplication 
!(–1)s1 M1  2E1

   *   (–1)s2 M2  2E2 

!  Exact Result: (–1)s M  2E 
!  Sign s:   s1 ^ s2 
!  Significand M:  M1 * M2 
!  Exponent E:  E1 + E2 

!  Fixing 
!  If M " 2, shift M right, increment E  
!  If E out of range, overflow  
!  Round M to fit frac precision 

!  Implementation 
!  What is hardest? 
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Floating Point Addition 
 (–1)s1 M1  2E1   +   (-1)s2 M2  2E2 

Assume E1 > E2 

!  Exact Result: (–1)s M  2E 
!  Sign s, significand M:  

!  Result of signed align & add 
!  Exponent E:  E1 

!  Fixing 
!  If M ! 2, shift M right, increment E  
!  if M < 1, shift M left k positions, decrement E by k 
!  Overflow if E out of range 
!  Round M to fit frac precision 

(–1)s1 M1  

(–1)s2 M2  

E1–E2 

+ 

(–1)s M 
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Hmm… if we round at every 
operation… 
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Mathematical Properties of FP 
Operations 
!  Not really associative or distributive due to rounding 
!  Infinities and NaNs cause issues 
!  Overflow and infinity 
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Floating Point in C 
!  C Guarantees Two Levels 

float  single precision 
double  double precision 

!  Conversions/Casting 
!  Casting between int, float, and double changes bit 

representation 
!   Double/float ! int 

!  Truncates fractional part 
!  Like rounding toward zero 
!  Not defined when out of range or NaN: Generally sets to TMin 

!   int ! double 
!  Exact conversion, why? 

!   int ! float 
!  Will round according to rounding mode 21 
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Memory Referencing Bug (Revisited) 
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double fun(int i) 
{ 
  volatile double d[1] = {3.14}; 
  volatile long int a[2]; 
  a[i] = 1073741824; /* Possibly out of bounds */ 
  return d[0]; 
} 

fun(0)  –>  3.14 
fun(1)  –>  3.14 
fun(2)  –>  3.1399998664856 
fun(3)  –>  2.00000061035156 
fun(4)  –>  3.14, then segmentation fault 

Saved State 

d7 … d4 

d3 … d0 

a[1] 

a[0] 0 

1 

2 

3 

4 

Location 
accessed by fun
(i) 

Explanation: 
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Floating Point and the Programmer 
#include <stdio.h> 

int main(int argc, char* argv[]) { 

  float f1 = 1.0; 
  float f2 = 0.0; 
  int i; 
  for ( i=0; i<10; i++ ) { 
    f2 += 1.0/10.0; 
  } 

  printf("0x%08x  0x%08x\n", *(int*)&f1, *(int*)&f2); 
  printf("f1 = %10.8f\n", f1); 
  printf("f2 = %10.8f\n\n", f2); 

  f1 = 1E30; 
  f2 = 1E-30; 
  float f3 = f1 + f2; 
  printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" ); 

  return 0; 
} 

University of Washington 

Floating Point and the Programmer 
#include <stdio.h> 

int main(int argc, char* argv[]) { 

  float f1 = 1.0; 
  float f2 = 0.0; 
  int i; 
  for ( i=0; i<10; i++ ) { 
    f2 += 1.0/10.0; 
  } 

  printf("0x%08x  0x%08x\n", *(int*)&f1, *(int*)&f2); 
  printf("f1 = %10.8f\n", f1); 
  printf("f2 = %10.8f\n\n", f2); 

  f1 = 1E30; 
  f2 = 1E-30; 
  float f3 = f1 + f2; 
  printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" ); 

  return 0; 
} 

$ ./a.out  
0x3f800000  0x3f800001 
f1 = 1.000000000 
f2 = 1.000000119 

f1 == f3? yes 
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Summary 
"  As with integers, floats suffer from the fixed number of 
bits  
   available to represent them  

"  Can get overflow/underflow, just like ints 

"  Some “simple fractions” have no exact representation 

"  E.g., 0.1 
"  Can also lose precision, unlike ints 

"   “Every operation gets a slightly wrong result” 

"  Mathematically equivalent ways of writing an expression 
may  
   compute differing results 

"  NEVER test floating point values for equality! 25 


