Today: Floats!

Today Topics: Floating Point

■ Background: Fractional binary numbers

- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is $1011.101 ?$

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$
b_{k} 2^{k}
$$

Fractional Binary Numbers: Examples

- Value

5 and $3 / 4$
2 and $7 / 8$ 63/64

Representation
101.11_{2}
10.111_{2}
0.111111_{2}

■ Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form $0.111111 . . .2$ are just below 1.0
- $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$
- Use notation $1.0-\varepsilon$

Representable Numbers

- Limitation

- Can only exactly represent numbers of the form $x / 2^{k}$
- Other rational numbers have repeating bit representations
- Value

1/3
1/5
1/10

Representation
0.0101010101 [01] ...2
0.001100110011[0011] ...2
0.0001100110011 [0011] ...2

Fixed Point Representation

- float $\rightarrow \mathbf{3 2}$ bits; double $\rightarrow \mathbf{6 4}$ bits
- We might try representing fractional binary numbers by picking a fixed place for an implied binary point
- "fixed point binary numbers"
- Let's do that, using 8 bit floating point numbers as an example
- \#1: the binary point is between bits 2 and 3
$b_{7} b_{6} b_{5} b_{4} b_{3}$ [.] $b_{2} b_{1} b_{0}$
- \#2: the binary point is between bits 4 and 5
$b_{7} b_{6} b_{5}$ [.] $b_{4} b_{3} b_{2} b_{1} b_{0}$
- The position of the binary point affects the range and precision
- range: difference between the largest and smallest representable numbers
- precision: smallest possible difference between any two numbers

Fixed Point Pros and Cons

- Pros
- It's simple. The same hardware that does integer arithmetic can do fixed point arithmetic
- In fact, the programmer can use ints with an implicit fixed point
- E.g., int balance; // number of pennies in the account
- ints are just fixed point numbers with the binary point to the right of b_{0}
- Cons
- There is no good way to pick where the fixed point should be
- Sometimes you need range, sometimes you need precision. The more you have of one, the less of the other

What else could we do?

IEEE Floating Point

- Fixing fixed point: analogous to scientific notation
- Not 12000000 but $1.2 \times 10^{\wedge} 7$; not 0.0000012 but $1.2 \times 10^{\wedge}-6$
- IEEE Standard 754
- Established in 1985 as uniform standard for floating point arithmetic
- Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
- Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

- Numerical Form:

$$
(-1)^{s} M 2^{E}
$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
- MSB s is sign bit s
- frac field encodes M (but is not equal to M)
- \exp field encodes E (but is not equal to E)

s	exp	frac

Precisions

- Single precision: 32 bits

s	\exp		frac
1	8		23

Double precision: 64 bits

s	\exp		frac
1	11		52

- Extended precision: 80 bits (Intel only)

s	\exp		frac
1	15		63 or 64

Normalization and Special

Values

-"Normalized" means mantissa has form 1.xxxxx

- 0.011×2^{5} and 1.1×2^{3} represent the same number, but the latter makes better use of the available bits
- Since we know the mantissa starts with a 1 , don't bother to store it
. How do we do 0 ? How about 1.0/0.0?

Normalization and Special

Values
. "Normalized" means mantissa has form 1.xxxxx

- 0.011×2^{5} and 1.1×2^{3} represent the same number, but the latter makes better use of the available bits
- Since we know the mantissa starts with a 1, don't bother to store it

- Special values:

- The float value 00... 0 represents zero
- If the $\exp ==11 \ldots 1$ and the mantissa $==00 \ldots 0$, it represents ∞
- E.g., $10.0 / 0.0 \rightarrow \infty$
olf the $\exp ==11 \ldots 1$ and the mantissa != 00...0, it represents NaN
- "Not a Number"
- Results from operations with undefined result
- E.g., 0 *

How do we do operations?

- Is representation exact?
- How are the operations carried out?

Floating Point Operations: Basic Idea

- $\mathbf{x}+_{f} \mathbf{y}=\operatorname{Round}(x+y)$
$\mathbf{x}{ }^{*} \mathrm{f} \mathbf{y}=\operatorname{Round}(\mathrm{x} * \mathrm{y})$
- Basic idea
- First compute exact result
- Make it fit into desired precision
- Possibly overflow if exponent too large
- Possibly round to fit into frac

Floating Point
 Multiplication

$(-1)^{s 1}$ M1 $2^{E 1}$ * $(-1)^{s 2}$ M2 $2^{E 2}$

- Exact Result: $(-1)^{s} M 2^{E}$
- Sign s: $\quad s 1^{\wedge} s 2$
- Significand M: M1 * M2
- Exponent E: E1 + E2

Fixing

- If $M \geq 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision
- Implementation
- What is hardest?

Floating Point Addition

$(-1)^{\mathrm{s} 1} \mathrm{M} 12^{\mathrm{E} 1}+(-1)^{\mathrm{s} 2} \mathrm{M} 22^{\mathrm{E} 2}$
Assume E1 > E2

- Exact Result: (-1) ${ }^{s} M 2^{E}$
$(-1)^{s^{1}}$ M1
- Sign s, significand M :
- Result of signed align \& add
$+\quad(-1)^{\mathrm{s} 2} \mathrm{M} 2$
- Exponent E: E1

Fixing

- If $M \geq 2$, shift M right, increment E
- if $M<1$, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Hmm... if we round at every operation...

Mathematical Properties of FP Operations

- Not really associative or distributive due to rounding
- Infinities and NaNs cause issues
- Overflow and infinity

Floating Point in C

- C Guarantees Two Levels

float single precision
double double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- Double/float \rightarrow int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN: Generally sets to TMin
- int \rightarrow double
- Exact conversion, why?
- int \rightarrow float
- Will round according to rounding mode

Memory Referencing Bug (Revisited)

```
double fun(int i)
{
    volatile double d[1] = {3.14};
    volatile long int a[2];
    a[i] = 1073741824; /* Possibly out of bounds */
    return d[0];
}
\begin{tabular}{lll} 
fun (0) & \(->\) & 3.14 \\
fun(1) & \(->\) & 3.14 \\
fun(2) & \(\rightarrow>\) & 3.1399998664856 \\
fun(3) & \(\rightarrow\) & \begin{tabular}{l}
2.00000061035156 \\
fun(4)
\end{tabular} ->
\end{tabular}
```

Explanation:
\(\left.\begin{array}{|l|l}Saved State \& 4

\hline d 7 ··· d 4 \& 3

\hline d 3 ··· d 0 \& 2

\hline a[1] \& 1

\hline a[0] \& 0\end{array}\right\}\)| Location |
| :--- |
| accessed by fun |
| (i) |

Floating Point and the Programmer

```
#include <stdio.h>
int main(int argc, char* argv[]) {
    float f1 = 1.0;
    float f2 = 0.0;
    int i;
    for ( i=0; i<10; i++ ) {
    f2 += 1.0/10.0;
    }
    printf("0x%08x 0x%08x\n", *(int*) &f1, *(int*) &f2);
    printf("f1 = %10.8f\n", f1);
    printf("f2 = %10.8f\n\n", f2);
    f1 = 1E30;
    f2 = 1E-30;
    float f3 = f1 + f2;
    printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
    return 0;
}
```


Floating Point and the Programmer

```
#include <stdio.h>
int main(int argc, char* argv[]) {
    float f1 = 1.0;
    float f2 = 0.0;
    int i;
    for ( i=0; i<10; i++ ) {
        f2 += 1.0/10.0;
    }
    printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
    printf("f1 = %10.8f\n", f1);
    printf("f2 = %10.8f\n\n", f2);
    f1 = 1E30;
    f2 = 1E-30;
$ ./a.out
0x3£800000 0x3£800001
f1 = 1.000000000
f2 = 1.000000119
    float f3 = f1 + f2;
    printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
    return 0;
}
```


Summary

- As with integers, floats suffer from the fixed number of bits
available to represent them
- Can get overflow/underflow, just like ints
- Some "simple fractions" have no exact representation
- E.g., 0.1
- Can also lose precision, unlike ints
- "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may
compute differing results
- NEVER test floating point values for equality!

