Today: Floats!

Today Topics: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Fractional binary numbers

- What is 1011.101?

Fractional Binary Numbers

- Representation
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \(\sum_{k=0}^{i} b_k 2^{i-k} \)
Fractional Binary Numbers: Examples

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 and 3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2 and 7/8</td>
<td>10.111₂</td>
</tr>
<tr>
<td>63/64</td>
<td>0.111111₁₁₂</td>
</tr>
</tbody>
</table>

Observations
- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form $0.111111\ldots₂$ are just below 1.0
 - $1/2 + 1/4 + 1/8 + \ldots + 1/2^i + \ldots \rightarrow 1.0$
 - Use notation $1.0 - \varepsilon$

Representable Numbers

Limitation
- Can only exactly represent numbers of the form $x/2^k$
- Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>0.010101011₀₁₁₀₁₁⁻₂</td>
</tr>
<tr>
<td>1/5</td>
<td>0.001100110011[0011]⁻₂</td>
</tr>
<tr>
<td>1/10</td>
<td>0.0001100110011[0011]⁻₂</td>
</tr>
</tbody>
</table>
Fixed Point Representation

- **float** → 32 bits; **double** → 64 bits
- We might try representing fractional binary numbers by picking a fixed place for an implied binary point
 - “fixed point binary numbers”
- Let’s do that, using 8 bit floating point numbers as an example
 - #1: the binary point is between bits 2 and 3
 \[b_7 b_6 b_5 b_4 \text{[.]} b_3 b_2 b_1 b_0 \]
 - #2: the binary point is between bits 4 and 5
 \[b_7 b_6 b_5 \text{[.]} b_4 b_3 b_2 b_1 b_0 \]
- The position of the binary point affects the range and precision
 - range: difference between the largest and smallest representable numbers
 - precision: smallest possible difference between any two numbers

Fixed Point Pros and Cons

- **Pros**
 - It’s simple. The same hardware that does integer arithmetic can do fixed point arithmetic
 - In fact, the programmer can use ints with an implicit fixed point
 - E.g., int balance; // number of pennies in the account
 - ints are just fixed point numbers with the binary point to the right of \(b_0 \)
- **Cons**
 - There is no good way to pick where the fixed point should be
 - Sometimes you need range, sometimes you need precision. The more you have of one, the less of the other
What else could we do?

IEEE Floating Point

- **Fixing fixed point: analogous to scientific notation**
 - Not 12000000 but 1.2 x 10^7; not 0.0000012 but 1.2 x 10^-6

- **IEEE Standard 754**
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs

- **Driven by numerical concerns**
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard
Floating Point Representation

- **Numerical Form:**
 \((-1)^s M \times 2^E\)
 - Sign bit \(s\) determines whether number is negative or positive
 - Significand (mantissa) \(M\) normally a fractional value in range [1.0, 2.0).
 - Exponent \(E\) weights value by power of two

- **Encoding**
 - MSB \(s\) is sign bit \(s\)
 - \(\text{frac}\) field encodes \(M\) (but is not equal to \(M\))
 - \(\text{exp}\) field encodes \(E\) (but is not equal to \(E\))

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>23</td>
</tr>
</tbody>
</table>

Precisions

- **Single precision:** 32 bits

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>23</td>
</tr>
</tbody>
</table>

- **Double precision:** 64 bits

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>52</td>
</tr>
</tbody>
</table>

- **Extended precision:** 80 bits (Intel only)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>63 or 64</td>
</tr>
</tbody>
</table>
Normalization and Special Values

- “Normalized” means mantissa has form $1.xxxxx$
 - 0.011×2^5 and 1.1×2^3 represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, don't bother to store it

- How do we do 0? How about $1.0/0.0$?

Special values:

- The float value $00...0$ represents zero
- If the exp == 11...1 and the mantissa == 00...0, it represents ∞
 - E.g., $10.0 / 0.0 \rightarrow \infty$
- If the exp == 11...1 and the mantissa != 00...0, it represents NaN
 - “Not a Number”
- Results from operations with undefined result
 - E.g., $0 * \infty$
How do we do operations?

- Is representation exact?
- How are the operations carried out?

Floating Point Operations: Basic Idea

- $x +_f y = \text{Round}(x + y)$

- $x \times_f y = \text{Round}(x \times y)$

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into \text{frac}
Floating Point Multiplication

\[(-1)^{s_1} M_1 \ 2^{E_1} \ * \ (-1)^{s_2} M_2 \ 2^{E_2} \]

- **Exact Result:** \((-1)^s \ M \ 2^E\)
 - Sign \(s\): \(s_1 \ ^{\land} \ s_2\)
 - Significand \(M\): \(M_1 \ * \ M_2\)
 - Exponent \(E\): \(E_1 + E_2\)

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(E\) out of range, overflow
 - Round \(M\) to fit \(\text{frac}\) precision

- **Implementation**
 - What is hardest?

Floating Point Addition

\[(-1)^{s_1} M_1 \ 2^{E_1} \ + \ (-1)^{s_2} M_2 \ 2^{E_2} \]

Assume \(E_1 > E_2\)

- **Exact Result:** \((-1)^s \ M \ 2^E\)
 - Sign \(s\), significand \(M\):
 - Result of signed align & add
 - Exponent \(E\): \(E_1\)

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(M < 1\), shift \(M\) left \(k\) positions, decrement \(E\) by \(k\)
 - Overflow if \(E\) out of range
 - Round \(M\) to fit \(\text{frac}\) precision
Hmm… if we round at every operation…

Mathematical Properties of FP Operations

- Not really associative or distributive due to rounding
- Infinities and NaNs cause issues
- Overflow and infinity
Floating Point in C

- C Guarantees Two Levels

 - `float` single precision
 - `double` double precision

- Conversions/Casting

 - Casting between `int`, `float`, and `double` changes bit representation

 - `Double/float → int`

 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin

 - `int → double`

 - Exact conversion, why?

 - `int → float`

 - Will round according to rounding mode

Memory Referencing Bug (Revisited)

```
double fun(int i)
{
    volatile double d[1] = {3.14};
    volatile long int a[2];
    a[i] = 1073741824; /* Possibly out of bounds */
    return d[0];
}
```

fun(0) → 3.14
fun(1) → 3.14
fun(2) → 3.1399998664856
fun(3) → 2.00000061035156
fun(4) → 3.14, then segmentation fault

Explanation:

<table>
<thead>
<tr>
<th>Saved State</th>
<th>Location accessed by fun(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d7 ... d4</td>
<td>3</td>
</tr>
<tr>
<td>d3 ... d0</td>
<td>2</td>
</tr>
<tr>
<td>a[1]</td>
<td>1</td>
</tr>
<tr>
<td>a[0]</td>
<td>0</td>
</tr>
</tbody>
</table>

21
#include <stdio.h>

int main(int argc, char* argv[]) {
 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for (i=0; i<10; i++) {
 f2 += 1.0/10.0;
 }
 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %10.8f\n", f1);
 printf("f2 = %10.8f\n\n", f2);

 f1 = 1E30;
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

 return 0;
}
Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some “simple fractions” have no exact representation
 - E.g., 0.1
 - Can also lose precision, unlike ints
 - “Every operation gets a slightly wrong result”

- Mathematically equivalent ways of writing an expression may compute differing results

- NEVER test floating point values for equality!