Today's Topics

- **▲Strings**
- **▲**Boolean algebra
- **Representation of integers: unsigned and signed**
- **▲**Casting
- **Arithmetic and shifting**
- **▲**Sign extension

Quick review...

x at location 0x04, y at 0x18

```
int * x; int y;
  x = &y + 3; // get address of y add 12
int * x; int y;
                                                              0000
  *x = y; // value of y to location x point
                                                              0004
                                                              8000
                                                              000C
                                                              0010
                                                              0014
                                          AA BB
                                                  CC DD
                                                              0018
                                                              001C
                                                              0020
                                                              0024
```

Representing strings?

Representing strings

A C-style string is represented by an array of bytes.

- Elements are one-byte ASCII codes for each character.
- $-\,$ A 0 value marks the end of the array.

32	space	48	0	64	@	80	Р	96	`	112	р
33	!	49	1	65	Α	81	Q	97	a	113	q
34	"	50	2	66	В	82	R	98	b	114	r
35	#	51	3	67	C	83	S	99	С	115	S
36	\$	52	4	68	D	84	Т	100	d	116	t
37	%	53	5	69	Е	85	U	101	е	117	u
38	&	54	6	70	F	86	٧	102	f	118	٧
39	,	55	7	71	G	87	W	103	g	119	W
40	(56	8	72	Н	88	Χ	104	h	120	X
41)	57	9	73	- 1	89	Υ	105		121	у
42	*	58	:	74	J	90	Z	106	j	122	Z
43	+	59	;	75	K	91	[107	k	123	{
44	,	60	<	76	L	92	\	108	ι	124	
45	-	61	=	77	Μ	93]	109	m	125	}
46	.	62	>	78	N	94	^	110	n	126	~
47	/	63	?	79	0	95	_	111	0	127	del

Null-terminated Strings

For example, "Harry Potter" can be stored as a 13-byte array.

Why do we put a a 0, or null, at the end of the string?

Computing string length?

Compatibility

char
$$S[6] = "12345";$$

Byte ordering not an issue

Unicode characters – up to 4 bytes/character

ASCII codes still work (leading 0 bit) but can support the many characters in all languages in the world

Java and C have libraries for Unicode (Java commonly uses 2 bytes/char)

Boolean Algebra

Developed by George Boole in 19th Century

Algebraic representation of logic

Encode "True" as 1 and "False" as 0

AND: A&B = 1 when both A is 1 and B is 1

OR: A|B = 1 when either A is 1 or B is 1

XOR: A^B = 1 when either A is 1 or B is 1, but not both

NOT: ~A = 1 when A is 0 and vice-versa

DeMorgan's Law: \sim (A | B) = \sim A & \sim B

General Boolean Algebras

Operate on bit vectors

Operations applied bitwise 01101001 01101001 01010101

1 01101001 <u>^ 01010101</u>

~ 01010101

All of the properties of Boolean algebra apply

<u>^ 01010101</u>

How does this relate to set operations?

Representing & Manipulating Sets

Representation

```
Width w bit vector represents subsets of \{0, ..., w-1\}
a_j = 1 \text{ if } j \in A
01101001\{0, 3, 5, 6\}
76543210
01010101\{0, 2, 4, 6\}
76543210
```

Operations

```
& Intersection 010000001 { 0, 6 }
| Union 01111101 { 0, 2, 3, 4, 5, 6 }

^ Symmetric difference 00111100 { 2, 3, 4, 5 }
~ Complement 10101010 { 1, 3, 5, 7 }
```

Bit-Level Operations in C

Operations &, |, ^, ~ are available in C

Apply to any "integral" data type

long, int, short, char, unsigned

View arguments as bit vectors

Arguments applied bit-wise

Examples (char data type)

```
\sim 0 \times 41 --> 0 \times BE
\sim 01000001_2 --> 101111110_2
\sim 0 \times 00 --> 0 \times FF
\sim 00000000_2 --> 111111111_2
0 \times 69 \& 0 \times 55 --> 0 \times 41
01101001_2 \& 01010101_2 --> 01000001_2
0 \times 69 | 0 \times 55 --> 0 \times 7D
01101001_2 | 01010101_2 --> 01111101_2
```

Contrast: Logic Operations in C

Contrast to logical operators

```
View 0 as "False"

Anything nonzero as "True"

Always return 0 or 1

Early termination
```

Examples (char data type)

```
!0x41 --> 0x00
!0x00 --> 0x01
!!0x41 --> 0x01

0x69 && 0x55 --> 0x01

0x69 || 0x55 --> 0x01

p && *p++ (avoids null pointer access, null pointer = 0x00000000)
```

Encoding Integers

- The hardware (and C) supports two flavors of integers:
 - unsigned only the non-negatives
 - signed both negatives and non-negatives
- There are only 2^W distinct bit patterns of W bits, so...
 - Can't represent all the integers
 - Unsigned values are 0 ... 2^W-1
 - Signed values are -2W-1 ... 2W-1-1

Unsigned Integers

- Unsigned values are just what you expect
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + \dots + b_12^1 + b_02^0$
 - Interesting aside: $1+2+4+8+...+2^{N-1} = 2^{N}-1$

- You add/subtract them using the normal "carry/borrow" rules, just in binary
- An important use of unsigned integers in C is pointers
 - There are no negative memory addresses

Signed Integers

- Let's do the natural thing for the positives
 - They correspond to the unsigned integers of the same value
 - Example (8 bits): 0x00 = 0, 0x01 = 1, ..., 0x7F = 127
- But, we need to let about half of them be negative
 - Use the high order bit to indicate 'negative'
 - Call it "the sign bit"
 - Examples (8 bits):
 - $0x00 = 00000000_2$ is non-negative, because the sign bit is 0
 - $0x7F = 011111111_2$ is non-negative
 - $0x80 = 10000000_{2}$ is negative

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - Possibility 1: 10000001₂
 Use the MSB for "+ or -", and the other bits to give magnitude

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - Possibility 1: 10000001₂
 Use the MSB for "+ or -", and the other bits to give magnitude
 (Unfortunate side effect: there are two representations of 0!)

Sign-and-Magnitude Negatives

How should we represent -1 in binary?

Possibility 1: 10000001₂
 Use the MSB for "+ or -", and the other bits to give magnitude

Another problem: math is cumbersome

4 - 3 != 4 + (-3)

Ones' Complement Negatives

- How should we represent -1 in binary?
 - Possibility 2: 111111110₂

Negative numbers: bitwise complements of positive

numbers

It would be handy if we could use the same hardware adder to add signed integers as unsigned 0 + 0

Invert and add

Ones' Complement Negatives

- How should we represent -1 in binary?
 - Possibility 2: 111111110₂
 Negative numbers: bitwise complements of positive numbers
 - Solves the arithmetic problem

Add

			,		
4	0100	4	0100	- 4	1011
+ 3	+ 0011	- 3	+ 1100	+ 3	+ 0011
= 7	= 0111	= 1	1 0000	- 1	1110
		add carry:	+1		
			= 0001		

Invert, add, add carry

end-around carry

Ones' Complement Negatives

How should we represent -1 in binary?

Possibility 2: 111111110₂
 Negative numbers: bitwise complements of positive numbers
 Use the same hardware adder to add signed integers as unsigned (but we have to keep track of the end-around carry bit)

Why does it work?

- The ones' complement of a 4-bit positive number y is 1111₂ y
 - $0111 \equiv 7_{10}$
 - $1111_2 0111_2 = 1000_2 \equiv -7_{10}$
- 1111_2 is 1 less than $10000_2 = 2^4 1$
 - -y is represented by $(2^4 1) y$

Ones' Complement Negatives

- How should we represent -1 in binary?
 - Possibility 2: 111111110₂
 Negative numbers: bitwise complements of positive numbers

(But there are still two representations of 0!)

Two's Complement Negatives

- How should we represent -1 in binary?
 - Possibility 3: 111111111₂
 Bitwise complement plus one (Only one zero)

Invert and add

Two's Complement Negatives

- How should we represent -1 in binary?
 - Possibility 3: 111111111₂
 Bitwise complement plus one (Only one zero)

 Δdd

 Simplifies arithmetic
 Use the same hardware adder to add signed integers as unsigned (simple addition; discard the highest carry bit)

	Add	mvert	ina ada	mven	and add
4	0100	4	0100	- 4	1100
+ 3	+ 0011	– 3	+ 1101	+ 3	+ 0011
= 7	= 0111	= 1	1 0001	- 1	1111
		drop carry	= 0001		

Invert and add

Two's Complement Negatives

- How should we represent -1 in binary?
 - Two's complement: Bitwise complement plus one

Why does it work?

- Recall: The ones' complement of a b-bit positive number y is (2^b 1) y
- Two's complement adds one to the bitwise complement, thus, -y is $2^b y$
 - -y and $2^b y$ are equal mod 2^b (have the same remainder when divided by 2^b)
 - Ignoring carries is equivalent to doing arithmetic mod 2^b

Two's Complement Negatives

- How should we represent -1 in binary?
 - Two's complement: Bitwise complement plus one

- What should the 8-bit representation of -1 be?

```
00000001
+???????? (want whichever bit string gives right
result)
00000000
```

```
\begin{array}{ccc}
00000010 & 00000011 \\
+???????? & +???????? \\
00000000 & 00000000
\end{array}
```

Unsigned & Signed Numeric Values

Χ	Unsigned	Signed
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	– 7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	<u>-1</u>

- Both signed and unsigned integers have limits
 - If you compute a number that is too big, you wrap: 6 + 4 = ? 15U + 2U = ?
 - If you compute a number that is too small, you wrap: -7 - 3 = ? 0U -2U = ?
 - Answers are only correct mod 2^b
- The CPU may be capable of "throwing an exception" for overflow on signed values
 - It won't for unsigned
- But C and Java just cruise along silently when overflow occurs...

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Numeric Ranges

Unsigned Values

•
$$UMax = 2^w - 1$$

111...1

Two's Complement Values

TMin =

$$\begin{array}{rcl}
 100...0 \\
 TMax & = & 2^{w-1} - 1 \\
 011...1
 \end{array}$$

 -2^{w-1}

Other Values

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 000000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Values for Different Word Sizes

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9 ,223,372,036,854,775,808

Observations

- \blacksquare |TMin| = TMax + 1
 - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Conversion Visualized

2's Comp. → Unsigned **UMax** Ordering Inversion UMax – 1 Negative → Big Positive TMax + 1Unsigned TMax **TMax** Range 2's Complement Range **TMin**

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix
 - OU, 4294967259U

Casting

- int tx, ty;
- unsigned ux, uy;
- Explicit casting between signed & unsigned same as U2T and T2U

```
• tx = (int) ux;
```

```
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
• tx = ux;
```

```
• uy = ty;
```

Casting Surprises

Expression Evaluation

If mix unsigned and signed in single expression, signed values implicitly cast to unsigned

Including comparison operations <, >, ==, <=, >=

Examples for W = 32: TMIN = -2,147,483,648 TMAX = 2,147,483,647

Constant₁	Constant ₂	Relation	Exaluation
0	0U	<	signed
-1	0	>	unsigned
-1	0U	>	signed
2147483647	-2147483647-1	<	unsigned
2147483647U	-2147483647-1	>	signed
-1	-2	>	unsigned
(unsigned)-1	-2	<	unsigned
2147483647	2147483648U	>	signed
2147483647	(int) 2147483648U		- 32

Shift Operations

Left shift: $x \ll y$

Shift bit-vector x left by y positions
Throw away extra bits on left
Fill with 0s on right
Multiply by 2**y

Right shift: $x \gg y$

Shift bit-vector x right by y positions
Throw away extra bits on right

Logical shift (for unsigned)

Fill with 0s on left

Arithmetic shift (for signed)

Replicate most significant bit on right

Maintain sign of x

Divide by 2**y

correct truncation (towards 0) requires some care with signed numbers

Argument x	01100010
<< 3	00010 <i>000</i>
Logical >> 2	<i>00</i> 011000
Arithmetic >> 2	<i>00</i> 011000

Argument x	10100010
<< 3	00010 <i>000</i>
Logical >> 2	<i>00</i> 101000
Arithmetic >> 2	<i>11</i> 101000

Undefined behavior when y < 0 or y ≥ word_size

Using Shifts and Masks

Extract 2nd most significant byte of an integer

First shift: $x \gg (2 * 8)$

Then mask: (x >> 16) & 0xFF

Х	01100001 <mark>01100010</mark> 01100011 01100100
x >> 16	0000000 00000000 0110000 <mark>1 0110001</mark>
(x >> 16) & 0xFF	00000000 00000000 00000000 11111111 0000000 00000000
	0000000 00000000 00000000 01100010

Extracting the sign bit

(x >> 31) & 1 - need the "& 1" to clear out all other bits except LSB

Conditionals as Boolean expressions (assuming x is 0 or 1 here)

```
if (x) a=y else a=z; which is the same as a = x ? y : z;
Can be re-written as: a = ((x << 31) >> 31) & y + (!x << 31) >> 31) & z
```

Sign Extension

Task:

Given w-bit signed integer x

Convert it to w+k-bit integer with same value

Rule:

Make *k* copies of sign bit:

Sign Extension Example

```
short int x = 12345;

int ix = (int) x;

short int y = -12345;

int iy = (int) y;
```

	Decimal	Нех	Binary
X	12345	30 39	00110000 01101101
ix	12345	00 00 30 39	00000000 00000000 00110000 01101101
У	-12345	CF C7	11001111 11000111
iy	-12345	FF FF CF C7	11111111 11111111 11001111 11000111

Converting from smaller to larger integer data type C automatically performs sign extension