
University of Washington

Today’s Topics

! Strings
! Boolean algebra
! Representation of integers: unsigned and signed
! Casting
! Arithmetic and shifting
! Sign extension

1

University of Washington

Quick review…

x at location 0x04, y at 0x18
int * x; int y;

x = &y + 3; // get address of y add 12

int * x; int y;
*x = y; // value of y to location x points

2

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

DD CC BB AA

University of Washington

3

Representing strings?

University of Washington

4

Representing strings

A C-style string is represented by an array of bytes.

—  Elements are one-byte ASCII codes for each character.

—  A 0 value marks the end of the array.

32 space 48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 ” 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ’ 55 7 71 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 x
41) 57 9 73 I 89 Y 105 I 121 y
42 * 58 : 74 J 90 Z 106 j 122 z
43 + 59 ; 75 K 91 [107 k 123 {
44 , 60 < 76 L 92 \ 108 l 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 . 62 > 78 N 94 ^ 110 n 126 ~
47 / 63 ? 79 O 95 _ 111 o 127 del

University of Washington

Null-terminated Strings

For example, “Harry Potter” can be stored as a 13-byte array.

Why do we put a a 0, or null, at the end of the string?

Computing string length?

72 97 114 114 121 32 80 111 116 116 101 114 0

H a r r y P o t t e r \0

University of Washington

Compatibility

Byte ordering not an issue
Unicode characters – up to 4 bytes/character

ASCII codes still work (leading 0 bit) but can support the many
characters in all languages in the world

Java and C have libraries for Unicode (Java commonly uses 2 bytes/
char)

Linux/Alpha S Sun S

33
34

31
32

35
00

33
34

31
32

35
00

6

University of Washington

Boolean Algebra

Developed by George Boole in 19th Century

Algebraic representation of logic

Encode “True” as 1 and “False” as 0

AND: A&B = 1 when both A is 1 and B is 1

OR: A|B = 1 when either A is 1 or B is 1

XOR: A^B = 1 when either A is 1 or B is 1, but not both

NOT: ~A = 1 when A is 0 and vice-versa

DeMorgan’s Law: ~(A | B) = ~A & ~B

7

University of Washington

General Boolean Algebras

Operate on bit vectors
Operations applied bitwise

All of the properties of Boolean algebra apply

How does this relate to set operations?

 01101001
& 01010101
 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010

8

 01010101
^ 01010101
 00111100

University of Washington

Representing & Manipulating Sets

Representation

Width w bit vector represents subsets of {0, …, w–1}

aj = 1 if j ! A

01101001 { 0, 3, 5, 6 }

76543210

01010101 { 0, 2, 4, 6 }

76543210

Operations

& Intersection 01000001 { 0, 6 }

| Union 01111101 { 0, 2, 3, 4, 5, 6 }

^ Symmetric difference 00111100 { 2, 3, 4, 5 }

~ Complement 10101010 { 1, 3, 5, 7 }

9

University of Washington

Bit-Level Operations in C

Operations &, |, ^, ~ are available in C

Apply to any “integral” data type

long, int, short, char, unsigned

View arguments as bit vectors

Arguments applied bit-wise

Examples (char data type)

~0x41 --> 0xBE

~010000012 --> 101111102

~0x00 --> 0xFF

~000000002 --> 111111112

0x69 & 0x55 --> 0x41

011010012 & 010101012 --> 010000012

0x69 | 0x55 --> 0x7D

011010012 | 010101012 --> 011111012

10

University of Washington

Contrast: Logic Operations in C

Contrast to logical operators

&&, ||, !

View 0 as “False”

Anything nonzero as “True”

Always return 0 or 1

Early termination

Examples (char data type)

!0x41 --> 0x00

!0x00 --> 0x01

!!0x41 --> 0x01

0x69 && 0x55 --> 0x01

0x69 || 0x55 --> 0x01

p && *p++ (avoids null pointer access, null pointer = 0x00000000)

11

University of Washington

Encoding Integers
!  The hardware (and C) supports two flavors of

integers:
!  unsigned – only the non-negatives

!  signed – both negatives and non-negatives

!  There are only 2W distinct bit patterns of W bits,
so...
!  Can't represent all the integers

!  Unsigned values are 0 ... 2W-1

!  Signed values are -2W-1 ... 2W-1-1

University of Washington

Unsigned Integers
!  Unsigned values are just what you expect

!  b7b6b5b4b3b2b1b0 = b727 + b626 + b525 + … + b121 + b020

-  Interesting aside: 1+2+4+8+...+2N-1 = 2N -1

!  You add/subtract them using the normal
“carry/borrow” rules, just in binary

!  An important use of unsigned integers in C is
pointers
!  There are no negative memory addresses

 00111111
+00000001
 01000000

 63
+ 1
 64

University of Washington

Signed Integers
!  Let's do the natural thing for the positives

!  They correspond to the unsigned integers of the same
value

-  Example (8 bits): 0x00 = 0, 0x01 = 1, …, 0x7F = 127

!  But, we need to let about half of them be
negative
!  Use the high order bit to indicate 'negative'

!  Call it “the sign bit”

!  Examples (8 bits):

-  0x00 = 000000002 is non-negative, because the sign
bit is 0

-  0x7F = 011111112 is non-negative
-  0x80 = 100000002 is negative

University of Washington

Sign-and-Magnitude Negatives
!  How should we represent -1 in binary?

!  Possibility 1: 100000012
Use the MSB for “+ or -”, and the other bits to give
magnitude

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7 – 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

University of Washington

Sign-and-Magnitude Negatives
!  How should we represent -1 in binary?

!  Possibility 1: 100000012
Use the MSB for “+ or -”, and the other bits to give
magnitude
(Unfortunate side effect: there are two representations of 0!)

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7 – 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

University of Washington

Sign-and-Magnitude Negatives
!  How should we represent -1 in binary?

!  Possibility 1: 100000012
Use the MSB for “+ or -”, and the other bits to give
magnitude
Another problem: math is cumbersome

4 – 3 != 4 + (-3) 0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7 – 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

University of Washington

Ones’ Complement Negatives
!  How should we represent -1 in binary?

!  Possibility 2: 111111102
Negative numbers: bitwise complements of positive
numbers
It would be handy if we could use the same hardware adder
to add signed integers as unsigned

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7 – 7

– 6

– 5

– 4

– 3

– 2

– 1
– 0

University of Washington

Ones’ Complement Negatives
!  How should we represent -1 in binary?

!  Possibility 2: 111111102
Negative numbers: bitwise complements of positive
numbers

-  Solves the arithmetic problem

end-around carry

University of Washington

Ones’ Complement Negatives
!  How should we represent -1 in binary?

!  Possibility 2: 111111102
Negative numbers: bitwise complements of positive
numbers
Use the same hardware adder to add signed integers as
unsigned (but we have to keep track of the end-around carry
bit)

Why does it work?

•  The ones’ complement of a 4-bit positive number y
is 11112 – y

•  0111 ! 710
•  11112 – 01112 = 10002 ! –710

•  11112 is 1 less than 100002 = 24 – 1

•  –y is represented by (24 – 1) – y

University of Washington

Ones’ Complement Negatives
!  How should we represent -1 in binary?

!  Possibility 2: 111111102
Negative numbers: bitwise complements of positive
numbers
(But there are still two representations of 0!)

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7 – 7

– 6

– 5

– 4

– 3

– 2

– 1
– 0

University of Washington

Two's Complement Negatives
!  How should we represent -1 in binary?

!  Possibility 3: 111111112
Bitwise complement plus one
(Only one zero)

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7 – 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

University of Washington

Two's Complement Negatives
!  How should we represent -1 in binary?

!  Possibility 3: 111111112
Bitwise complement plus one
(Only one zero)

!  Simplifies arithmetic
Use the same hardware adder to add signed integers as
unsigned (simple addition; discard the highest carry bit)

University of Washington

Two's Complement Negatives
!  How should we represent -1 in binary?

!  Two’s complement: Bitwise complement plus one

Why does it work?

•  Recall: The ones’ complement of a b-bit positive number y
is (2b – 1) – y

•  Two’s complement adds one to the bitwise complement,
thus, -y is 2b – y

•  –y and 2b – y are equal mod 2b

(have the same remainder when divided by 2b)

•  Ignoring carries is equivalent to doing arithmetic mod 2b

University of Washington

Two's Complement Negatives
!  How should we represent -1 in binary?

!  Two’s complement: Bitwise complement plus one

-  What should the 8-bit representation of -1 be?
 00000001
+???????? (want whichever bit string gives right
result)
 00000000

 00000010 00000011
+???????? +????????
 00000000 00000000

University of Washington

Unsigned & Signed Numeric Values
!  Both signed and unsigned integers

have limits
!  If you compute a number that is too

big, you wrap: 6 + 4 = ? 15U + 2U
= ?

!  If you compute a number that is too
small, you wrap: -7 – 3 = ? 0U –
2U = ?

!  Answers are only correct mod 2b

!  The CPU may be capable of
“throwing an exception” for overflow
on signed values

!  It won't for unsigned

!  But C and Java just cruise along
silently when overflow occurs...

X Signed Unsigned
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–8 8
–7 9
–6 10
–5 11
–4 12
–3 13
–2 14
–1 15

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7

26

University of Washington

Mapping Signed " Unsigned

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+16

27

University of Washington

Numeric Ranges
"  Unsigned Values

"  UMin = 0
000…0

"  UMax = 2w – 1
111…1

 Two’s Complement Values
TMin = –2w–1

100…0
TMax = 2w–1 – 1

011…1

 Other Values
Minus 1

111…1 0xFFFFFFFF (32
bits)

Values for W = 16

University of Washington

Values for Different Word Sizes

29

"  Observations
"  |TMin | = TMax + 1

"  Asymmetric range
"  UMax = 2 * TMax + 1

"  C Programming
"  #include <limits.h>
"  Declares constants, e.g.,

"  ULONG_MAX
"  LONG_MAX
"  LONG_MIN

"  Values platform specific

University of Washington

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized
2’s Comp. # Unsigned

Ordering Inversion

Negative # Big Positive

30

University of Washington

Signed vs. Unsigned in C
!  Constants

!  By default are considered to be signed integers
!  Unsigned if have “U” as suffix

!  0U, 4294967259U

!  Casting
!  int tx, ty;

!  unsigned ux, uy;

!  Explicit casting between signed & unsigned same as U2T and T2U
!  tx = (int) ux;

!  uy = (unsigned) ty;

!  Implicit casting also occurs via assignments and procedure calls
!  tx = ux;

!  uy = ty;

31

University of Washington

 0 0U == unsigned
 -1 0 < signed
 -1 0U > unsigned
 2147483647 -2147483648 > signed
 2147483647U -2147483648 < unsigned
 -1 -2 > signed
 (unsigned) -1 -2 > unsigned
 2147483647 2147483648U < unsigned
 2147483647 (int) 2147483648U > signed

Casting Surprises
Expression Evaluation

If mix unsigned and signed in single expression,
signed values implicitly cast to unsigned

Including comparison operations <, >, ==, <=, >=
Examples for W = 32: TMIN = -2,147,483,648 TMAX =

2,147,483,647

Constant1 Constant2 Relation Evaluation
 0 0U
 -1 0
 -1 0U
 2147483647 -2147483647-1
 2147483647U -2147483647-1
 -1 -2
 (unsigned)-1 -2
 2147483647 2147483648U
 2147483647 (int) 2147483648U

32

University of Washington

Shift Operations
Left shift: x << y

Shift bit-vector x left by y positions
Throw away extra bits on left
Fill with 0s on right

Multiply by 2**y
Right shift: x >> y

Shift bit-vector x right by y positions
Throw away extra bits on right

Logical shift (for unsigned)
Fill with 0s on left

Arithmetic shift (for signed)
Replicate most significant bit on right
Maintain sign of x

Divide by 2**y
correct truncation (towards 0) requires

some care with signed numbers

01100010 Argument x

00010000 << 3

00011000 Logical >> 2

00011000 Arithmetic >> 2

10100010 Argument x

00010000 << 3

00101000 Logical >> 2

11101000 Arithmetic >> 2

00010000 00010000

00011000 00011000

00011000 00011000

00010000

00101000

11101000

00010000

00101000

11101000

33

Undefined behavior when
y < 0 or y ! word_size

University of Washington

Using Shifts and Masks

Extract 2nd most significant byte of an integer
First shift: x >> (2 * 8)
Then mask: (x >> 16) & 0xFF

Extracting the sign bit
(x >> 31) & 1 - need the “& 1” to clear out all other bits except LSB

Conditionals as Boolean expressions (assuming x is 0 or
1 here)
if (x) a=y else a=z; which is the same as a = x ? y : z;
Can be re-written as: a = ((x << 31) >> 31) & y + (!x << 31) >> 31)

& z

34

01100001 01100010 01100011 01100100 x

00010000 x >> 16

00011000
(x >> 16) & 0xFF

00010000 00000000 00000000 01100001 01100010

00011000 00000000 00000000 00000000 11111111
00000000 00000000 00000000 01100010

University of Washington

Sign Extension
Task:

Given w-bit signed integer x

Convert it to w+k-bit integer with same value

Rule:
Make k copies of sign bit:

X $ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0
k copies of MSB

• • • X %

X $% • • • • • •

• • •

w

w k
35

University of Washington

Sign Extension Example

Converting from smaller to larger integer data type

C automatically performs sign extension

 short int x = 12345;
 int ix = (int) x;
 short int y = -12345;
 int iy = (int) y;

Decimal Hex Binary
x 12345 30 39 00110000 01101101
ix 12345 00 00 30 39 00000000 00000000 00110000 01101101
y -12345 CF C7 11001111 11000111
iy -12345 FF FF CF C7 11111111 11111111 11001111 11000111

36

