Today Topics: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

- What is 1011.101?
Fractional Binary Numbers

- **Representation**
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \(\sum_{k=-j}^{i} b_k \cdot 2^k \)

Fractional Binary Numbers: Examples

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 and 3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2 and 7/8</td>
<td>10.111₁₂</td>
</tr>
<tr>
<td>63/64</td>
<td>0.11111₁₂</td>
</tr>
</tbody>
</table>

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.11111₁₂... are just below 1.0
 - \(1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0 \)
 - Use notation 1.0 − \(\varepsilon \)
Representable Numbers

- **Limitation**
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/3$</td>
<td>$0.01010101[01]..._2$</td>
</tr>
<tr>
<td>$1/5$</td>
<td>$0.001100110011[0011]..._2$</td>
</tr>
<tr>
<td>$1/10$</td>
<td>$0.0001100110011[0011]..._2$</td>
</tr>
</tbody>
</table>

IEEE Floating Point

- **IEEE Standard 754**
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs

- **Driven by numerical concerns**
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard
Floating Point Representation

- **Numerical Form:**
 \((-1)^s M 2^E\)
 - Sign bit \(s\) determines whether number is negative or positive
 - Significand (mantissa) \(M\) normally a fractional value in range \([1.0,2.0)\).
 - Exponent \(E\) weights value by power of two

- **Encoding**
 - MSB \(s\) is sign bit \(s\)
 - frac field encodes \(M\) (but is not equal to \(M\))
 - exp field encodes \(E\) (but is not equal to \(E\))

```
s   exp   frac
1    8    23
```

Precisions

- **Single precision:** 32 bits
  ```
s   exp   frac
1    8    23
```

- **Double precision:** 64 bits
  ```
s   exp   frac
1   11    52
```

- **Extended precision:** 80 bits (Intel only)
  ```
s   exp   frac
1   15   63 or 64
```
Normalized Values

- **Condition:** \(\exp \neq 000\ldots 0 \) and \(\exp \neq 111\ldots 1 \)

- **Exponent coded as biased value:** \(\exp = E + \text{Bias} \)
 - \(\exp \) is an unsigned value ranging from 1 to \(2^{e-2} \)
 - Allows negative values for \(E (= \exp - \text{Bias}) \)
 - \(\text{Bias} = 2^{e-1} - 1 \), where \(e \) is number of exponent bits (bits in \(\exp \))
 - Single precision: 127 (\(\exp: 1\ldots254, E: -126\ldots127 \))
 - Double precision: 1023 (\(\exp: 1\ldots2046, E: -1022\ldots1023 \))

- **Significand coded with implied leading 1:** \(M = 1.\text{xxx}\ldots x_2 \)
 - \(\text{xxx}\ldots x \): bits of \(\text{frac} \)
 - Minimum when 000\ldots0 \((M = 1.0) \)
 - Maximum when 111\ldots1 \((M = 2.0 - \varepsilon) \)
 - Get extra leading bit for “free”

Normalized Encoding Example

- **Value:** \(\text{Float } F = 12345.0; \)
 - 12345_{10} = 11000000111001_{2}
 - = 1.1000000111001 \times 2^{13} \)

- **Significand**
 - \(M = 1.1000000111001 \)
 - \(\text{frac} = 100000011100100000000000_{2} \)

- **Exponent**
 - \(E = 13 \)
 - \(\text{Bias} = 127 \)
 - \(\text{Exp} = 140 = 10001100_{2} \)

- **Result:**
 - \(0 \text{ 10001100 100000011100100000000000} \)
 - \(s \text{ exp frac} \)
Denormalized Values

- **Condition**: \(\text{exp} = 000...0 \)

- Exponent value: \(E = \text{exp} - \text{Bias} + 1 \) (instead of \(E = \text{exp} - \text{Bias} \))

- Significand coded with implied leading 0: \(M = 0 . \ xxx...x2 \)
 - \(xxx...x \): bits of \(\text{frac} \)

- **Cases**
 - \(\text{exp} = 000...0, \ \text{frac} = 000...0 \)
 - Represents value 0
 - Note distinct values: +0 and −0 (why?)
 - \(\text{exp} = 000...0, \ \text{frac} \neq 000...0 \)
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special Values

- **Condition**: \(\text{exp} = 111...1 \)

- **Case**: \(\text{exp} = 111...1, \ \text{frac} = 000...0 \)
 - Represents value \(\infty \) (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., \(1.0/0.0 = -1.0/-0.0 = +\infty, \ 1.0/-0.0 = -1.0/0.0 = -\infty \)

- **Case**: \(\text{exp} = 111...1, \ \text{frac} \neq 000...0 \)
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., \(\sqrt{-1}, -\infty, \infty \times 0 \)
Visualization: Floating Point Encodings

-∞ - Normalized - Denorm + Denorm + Normalized + ∞ NaN -0 +0

Tiny Floating Point Example

8-bit Floating Point Representation
- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same general form as IEEE Format
- normalized, denormalized
- representation of 0, NaN, infinity
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>s exp frac E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0000 000 -6</td>
<td>0</td>
</tr>
<tr>
<td>0 0000 001 -6</td>
<td>1/8*1/64 = 1/512</td>
</tr>
<tr>
<td>0 0000 010 -6</td>
<td>2/8*1/64 = 2/512</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>0 0000 110 -6</td>
<td>6/8*1/64 = 6/512</td>
</tr>
<tr>
<td>0 0000 111 -6</td>
<td>7/8*1/64 = 7/512</td>
</tr>
<tr>
<td>0 0001 000 -6</td>
<td>8/8*1/64 = 8/512</td>
</tr>
<tr>
<td>0 0001 001 -6</td>
<td>9/8*1/64 = 9/512</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>0 0110 110 -1</td>
<td>14/8*1/2 = 14/16</td>
</tr>
<tr>
<td>0 0110 111 -1</td>
<td>15/8*1/2 = 15/16</td>
</tr>
<tr>
<td>0 0111 000 0</td>
<td>8/8*1 = 1</td>
</tr>
<tr>
<td>0 0111 001 0</td>
<td>9/8*1 = 9/8</td>
</tr>
<tr>
<td>0 0111 010 0</td>
<td>10/8*1 = 10/8</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>0 1110 110 7</td>
<td>14/8*128 = 224</td>
</tr>
<tr>
<td>0 1110 111 7</td>
<td>15/8*128 = 240</td>
</tr>
</tbody>
</table>

Distribution of Values

- **6-bit IEEE-like format**
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1} - 1 = 3$

- Notice how the distribution gets denser toward zero.
Distribution of Values (close-up view)

6-bit IEEE-like format
- **e** = 3 exponent bits
- **f** = 2 fraction bits
- Bias is 3

<table>
<thead>
<tr>
<th>S</th>
<th>Exp</th>
<th>Frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>Exp</th>
<th>Frac</th>
<th>Numeric Value</th>
</tr>
</thead>
</table>
| **Zero** | 00...00 | 00...00 | 0.0
| **Smallest Pos. Denorm.** | 00...00 | 00...01 | $2^{- (23,52)} \times 2^{- 126,1022}$
| | | | 1.4 * 10^{-45} \text{ Single}
| | | | 4.9×10^{-324} \text{ Double}
| **Largest Denormalized** | 00...00 | 11...11 | $(1.0 - \epsilon) \times 2^{- 126,1022}$
| | | | 1.18×10^{-38} \text{ Single}
| | | | 2.2×10^{-308} \text{ Double}
| **Smallest Pos. Norm.** | 00...01 | 00...00 | 1.0 * 2^{- 126,1022}
| | | | Just larger than largest denormalized
| **One** | 01...11 | 00...00 | 1.0
| **Largest Normalized** | 11...10 | 11...11 | $(2.0 - \epsilon) \times 2^{127,1023}$
| | | | 3.4×10^{38} \text{ Single}
| | | | 1.8×10^{108} \text{ Double}

[Diagram showing distribution of values with denormalized, normalized, and infinity markers.]
Special Properties of Encoding

- Floating point zero (0^+) exactly the same bits as integer zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^+ = 0^- = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point Operations: Basic Idea

- $x +_e y = \text{Round}(x + y)$

- $x *_e y = \text{Round}(x * y)$

- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac
Rounding

- **Rounding Modes (illustrate with $ rounding)**

<table>
<thead>
<tr>
<th></th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>-$1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towards zero</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>-$1</td>
</tr>
<tr>
<td>Round down (-(\infty))</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>-$2</td>
</tr>
<tr>
<td>Round up ((+\infty))</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$3</td>
<td>-$1</td>
</tr>
<tr>
<td>Nearest (default)</td>
<td>$1</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>-$2</td>
</tr>
</tbody>
</table>

- **What are the advantages of the modes?**

Closer Look at Round-To-Nearest

- **Default Rounding Mode**
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under-estimated

- **Applying to Other Decimal Places / Bit Positions**
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth
 - 1.2349999 1.23 (Less than half way)
 - 1.2350001 1.24 (Greater than half way)
 - 1.2350000 1.24 (Half way—round up)
 - 1.2450000 1.24 (Half way—round down)
Rounding Binary Numbers

- Binary Fractional Numbers
 - “Half way” when bits to right of rounding position = \(100\ldots\)

Examples
- Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.00011(_2)</td>
<td>10.00(_2)</td>
<td>(<1/2—down)</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.00110(_2)</td>
<td>10.01(_2)</td>
<td>(>1/2—up)</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.11100(_2)</td>
<td>11.00(_2)</td>
<td>(1/2—up)</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.101000(_2)</td>
<td>10.10(_2)</td>
<td>(1/2—down)</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>

Floating Point Multiplication

\((-1)^{s1} M1 \ 2^{E1} \ast (-1)^{s2} M2 \ 2^{E2}\)

- Exact Result: \((-1)^{s} M \ 2^{E}\)
 - Sign \(s\): \(s1 \ast s2\)
 - Significand \(M\): \(M1 \ast M2\)
 - Exponent \(E\): \(E1 + E2\)

- Fixing
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(E\) out of range, overflow
 - Round \(M\) to fit \text{frac} precision

- Implementation
 - Biggest chore is multiplying significands
Floating Point Addition

\[(-1)^{s_1} M_1 \ 2^{E_1} \ + \ (-1)^{s_2} M_2 \ 2^{E_2} \]

Assume \(E_1 > E_2 \)

- **Exact Result:** \((-1)^s \ M \ 2^e\)
 - Sign \(s \), significand \(M \):
 - Result of signed align & add
 - Exponent \(E \): \(E_1 \)

- **Fixing**
 - If \(M \geq 2 \), shift \(M \) right, increment \(E \)
 - if \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
 - Overflow if \(E \) out of range
 - Round \(M \) to fit \(\text{frac} \) precision

Mathematical Properties of FP Operations

- Not really associative or distributive due to rounding
- Infinities and NaNs cause issues (e.g., no additive inverse)
- Overflow and infinity
Floating Point in C

- **C Guarantees Two Levels**
 - `float` single precision
 - `double` double precision

- **Conversions/Casting**
 - Casting between `int`, `float`, and `double` changes bit representation
 - `Double/float → int`
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to Tmin
 - `int → double`
 - Exact conversion, as long as int has ≤ 53 bit word size
 - `int → float`
 - Will round according to rounding mode

Memory Referencing Bug (Revisited)

def double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

fun(0) → 3.14
fun(1) → 3.14
fun(2) → 3.1399998664856
fun(3) → 2.00000061035156
fun(4) → 3.14, then segmentation fault

Explanation:

<table>
<thead>
<tr>
<th>Saved State</th>
<th>Location accessed by fun(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d7 ... d4</td>
<td>3</td>
</tr>
<tr>
<td>d3 ... d0</td>
<td>2</td>
</tr>
<tr>
<td>a[1]</td>
<td>1</td>
</tr>
<tr>
<td>a[0]</td>
<td>0</td>
</tr>
</tbody>
</table>
Representing 3.14 as a Double FP Number

- 1073741824 = 0100 0000 0000 0000 0000 0000 0000 0000
- 3.14 = 11.0010 0011 1101 0111 0000 1010 000...
- \((-1)^s M 2^e\)
 - S = 0 encoded as 0
 - M = 1.1001 0001 1110 1011 1000 0101 000... (leading 1 left out)
 - E = 1 encoded as 1024 (with bias)

<table>
<thead>
<tr>
<th>s</th>
<th>exp (11)</th>
<th>frac (first 20 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100 0000 0000</td>
<td>1001 0001 1110 1011 1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>frac (another 32 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101 0000 ...</td>
</tr>
</tbody>
</table>

Memory Referencing Bug (Revisited)

double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

<table>
<thead>
<tr>
<th>Saved State</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d7 ... d4</td>
<td>3</td>
</tr>
<tr>
<td>d3 ... d0</td>
<td>2</td>
</tr>
<tr>
<td>a[1]</td>
<td>1</td>
</tr>
<tr>
<td>a[0]</td>
<td>0</td>
</tr>
</tbody>
</table>

Location accessed by fun(i)
Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form $M \times 2^E$
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers