\qquad

1 Conceptual Design, Constraints, Views

1. (25 points)
(a) (10 points) Consider a relation $R(A, B, C, D, E)$ that satisfies the following functional dependencies:

$$
\begin{aligned}
A & \rightarrow B \\
C D & \rightarrow E
\end{aligned}
$$

Decompose the schema in BCNF. Show all your steps. A relation R is in BCNF if and only if: whenever there is a nontrivial functional dependency $A_{1}, A_{2}, \ldots, A_{n} \rightarrow$ $B_{1}, B_{2}, \ldots, B_{n}$ for R, then $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is a superkey for R.
Answer (Show the steps leading to the BCNF decomposition and show the keys in the decomposed relations):

BCNF Decomposition Algorithm

BCNF_Decompose(R)

find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+} \neq$[all attributes]
if (not found) then " R is in BCNF"
let $\mathrm{Y}=\mathrm{X}^{+}-\mathrm{X}$
let $Z=$ [all attributes] $-X^{+}$
decompose R into R1 $(\mathrm{X} \cup \mathrm{Y})$ and R2 $(\mathrm{X} \cup \mathrm{Z})$ continue to decompose recursively R1 and R2

Solution: Straightforward application of BCNF Decomp Algo from lecture 16, slide 44.

Iteration 1: R
$\mathrm{A}+=\mathrm{AB}$ Decompose into $\mathrm{R} 1=\underline{\mathrm{AB}}, \mathrm{R} 2=\mathrm{ACDE}$.
Continue to decompose R2 since R1 is in BCNF form already.
Iteration 2: R2
$\mathrm{CD}+=\mathrm{CDE}$
Decompose R 2 into $\mathrm{R} 3=\underline{\mathrm{CDE}}$ and $\mathrm{R} 4=\underline{\mathrm{CDA}}$

2 Transactions

(b) (25 points)

Consider a database consisting of a single relation R :
R:

A	B
1	10
2	20

Two transactions run concurrently on this database, resulting in the following schedule:

Line	T1	T2
1	begin;	
2		begin;
3	update R set $B=($ select $\operatorname{sum}(B)$ from $R)$ where $A=1$;	
4		update R set $B=($ select $\operatorname{sum}(B)$ from $R)$ where $A=2$;
5	select * from R;	
6		select * from R;
7	insert into r values (3,300);	
8		insert into r values (4,400 ;
9	select * from R;	
10		select * from R;
11	update R set $B=($ select $\operatorname{sum}(B)$ from $R)$ where $A=1$;	
12		update R set $B=($ select $\operatorname{sum}(B)$ from $R)$ where $A=2$;
13	select * from R;	
14		select * from R;
15	commit;	
16		commit;

(a) (5 points) Is this schedule possible in SQL Lite? If not, then indicate the first line where SQL Lite will change the schedule.
(a) No: line 4

Yes ? Or No (and indicate line number) ?
(b) (5 points) Is this schedule possible in SQL Server ? If not, then indicate the first line where SQL Server will change the schedule.
(b) No: line 4

Yes ? Or No (and indicate line number) ?
(c) (10 points) Consider running these two transactions in SQL Server, using isolation level SERIALIZABLE. Indicate the result of each of the six select $*$ statements, as well as the content of the table after both transactions commit.

Line Number	Result of select * from r;
5	
9	
13	
after T1 commits	
6	
10	
14	
after T2 commits	

Solution:	Line Number	Result of select * from r;
	5	(1,30), (2,20)
	9	(1,30), $(2,20),(3,300)$
	13	$(1,350),(2,20),(3,300)$
	after T1 commits	(1,350), (2,20), (3,300)
	6	(1,350), (2,670), (3,300)
	10	(1,350), (2,670), (3,300), (4,400)
	14	(1,350), (2,1720), (3,300), (4,400)
	after T2 commits	(1,350), (2,1720), (3,300), (4,400)

(d) (5 points) Is the schedule for these transactions serializable?
(d) Yes. T1; T2

Yes or No?

