Name:

$\mathrm{CSE}~344$

1 Conceptual Design, Constraints, Views

1. (25 points)

(a) (10 points) Consider a relation R(A, B, C, D, E) that satisfies the following functional dependencies:

$$\begin{array}{c} A \to B \\ CD \to E \end{array}$$

Decompose the schema in BCNF. Show all your steps. A relation R is in BCNF if and only if: whenever there is a nontrivial functional dependency $A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_n$ for R, then $\{A_1, A_2, ..., A_n\}$ is a superkey for R.

 $\underline{\textbf{Answer}}$ (Show the steps leading to the BCNF decomposition and show the keys in the decomposed relations):

Solution: Straightforward application of BCNF Decomp Algo from lecture 16, slide 44. Iteration 1: R A+ = AB Decompose into $R1 = \underline{A}B$, R2 = ACDE. Continue to decompose R2 since R1 is in BCNF form already.

Iteration 2: R2 CD+ = CDEDecompose R2 into R3 = \underline{CDE} and R4 = \underline{CDA}

2 Transactions

(b) (25 points)

Consider a database consisting of a single relation R:

R:	А	В
	1	10
	2	20

Two transactions run concurrently on this database, resulting in the following schedule:

Line	T1	T2
1	begin;	
2		begin;
3	update R set $B = (select sum(B) from R)$ where $A=1$;	
4		update R set $B = (select sum(B) from R)$ where $A=2$;
5	select $*$ from R;	
6		select * from R;
7	insert into r values (3,300);	
8		insert into r values $(4,400)$;
9	select $*$ from R;	
10		select * from R;
11	update R set $B = (select sum(B) from R)$ where $A=1$;	
12		update R set $B = (select sum(B) from R)$ where $A=2$;
13	select $*$ from R;	
14		select * from R;
15	commit;	
16		commit;

(a) (5 points) Is this schedule possible in SQL Lite ? If not, then indicate the first line where SQL Lite will change the schedule.

(a) No: line 4

Yes ? Or No (and indicate line number) ?

(b) (5 points) Is this schedule possible in SQL Server ? If not, then indicate the first line where SQL Server will change the schedule.

(b) **No: line 4**

Yes ? Or No (and indicate line number) ?

(c) (10 points) Consider running these two transactions in SQL Server, using isolation level SERIALIZABLE. Indicate the result of each of the six select * statements, as well as the content of the table after both transactions commit.

Line Number	Result of select * from r;
5	
9	
13	
after T1 commits	
6	
10	
14	
after T2 commits	

	Line Number	Result of select * from r;
	5	(1,30), (2,20)
	9	(1,30), (2,20), (3,300)
	13	(1,350), (2,20), (3,300)
Solution:	after T1 commits	(1,350), (2,20), (3,300)
	6	(1,350), (2,670), (3,300)
	10	(1,350), (2,670), (3,300), (4,400)
	14	(1,350), (2,1720), (3,300), (4,400)
	after T2 commits	(1,350), (2,1720), (3,300), (4,400)

(d) (5 points) Is the schedule for these transactions serializable ?

(d) <u>Yes. T1; T2</u>

Yes or No ?