THE MOST BASIC CONCEPTS

syntax: the form of a program
semantics: the meaning of a program

/* The World of Containers */

class Container
{
 int capacity;
 void *contents[MAX];

public:
 addObject(void *anObject);
 removeObject(void *anObject);
};

class Vehicle : Public Container
{
 protected : int position, velocity;
}
class Train : Public Vehicle
{
 train();
 private: int maxObtainableSpeed;
 int maxNumberOfPassengers;
 public:
 setSpeed(int speed);
 addPassenger(void *passenger);
}

FORTRAN

C FORM PARTIAL SUMS
C
SUBROUTINE PARSUM(A, B, N)
REAL A(N), B(N)
SUM = 0
DO 10 I = 1 , N
 SUM = SUM + A(I)
 B(I) = SUM
10 CONTINUE
RETURN
END

• scientific computation, real and complex
• easy-to-use, but powerful I/O facilities
• compilers for efficient parallel code
• lots of existing programs and libraries
ALGOL 60

begin
 integer m, n;
 n := 10;
 begin
 array a[1:n];
 procedure f(r,s);
 array r; integer s;
 begin
 for m = 1 step s until n do
 s := r[m] := s/2;
 end;
 end
 f(a,n)
 end
end

• block structuring
• variables local to blocks; deleted on exit
• recursion
• terrible I/O (at least in the IBM version)

SNOBOL4

PAT = ('SUBROUTINE' | 'FUNCTION') ARBNO(' ')
SPAN('ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789') . NAME

IN LINE = INPUT
LINE 'C' :F(END)
LINE PAT :S(IN)
CONT
LINE LEN(65) . LINE2
OUTPUT = LINE2 NAME N
N = N + 10
:(IN)
NEW
(NAME '000000') LEN(6) . NAME
OUTPUT =
OUTPUT = 'STARTING NEW ROUTINE'
N = 0
:(CONT)
END

• excellent string manipulation facilities
• automatic pattern matching, built-in functions
• user-defined structures
• recursion
PASCAL

TYPE RECPOINTER = ^SPACEREC;
SPACEREC = RECORD
 DATA: INTEGER;
 LINK: RECPOINTER
END;
VAR HEAD, TAIL: RECPOINTER;

PROCEDURE ADD(P : RECPOINTER);
 IF HEAD = NIL
 THEN BEGIN
 HEAD := P; TAIL := P
 END
 ELSE BEGIN
 TAIL^.LINK := P; TAIL := P
 END
END

• simple syntax
• user-defined types / dynamic allocation
• recursion
• limited I/O
• no string handling, must use arrays

LISP

DEFUN MYFUNC (N M)
(COND
 ((AND (NUMBERP N) (NUMBERP M)) (+ N M))
 (T NIL))

• programs made up of functions
• symbolic expressions
• list and tree handling
• untyped variables
• recursion
PROLOG

ON(REDBLOCK, BLUEBLOCK).
ON(BLUEBLOCK, GREENBLOCK).
ON(GREENBLOCK, YELLOWBLOCK).

ON(X,Y) :- ON(X,TEMP) ON(TEMP,Y).

?- ON(REDBLOCK, YELLOWBLOCK).

• symbolic expressions
• built-in logic proving mechanism
• recursion

JAVA

Import java.awt.Graphics;
Import java.awt.Color;

public class Hello extends java.applet.Applet {
 public void paint(Graphics g) {
 g.setColor(Color.red);
 g.drawString("Hello World!", 5, 25);

 g.setColor(Color.blue);
 g.drawString("More next week!", 5, 50);
 }
}

MORE NEXT WEEK!
MORE BASIC CONCEPTS

• variables and constants
 • datatypes
 • values and references
 • memory allocation and deallocation

• expressions and assignments

• control structures
 • blocks
 • branching statements
 • if-then-else statements
 • loops
 • procedure / function calls