
CSE341: Programming Languages Autumn 2018
Unit 1 Summary

Dan Grossman, University of Washington

Standard Description: This summary covers roughly the same material as lecture and section. It can help
to read about the material in a narrative style and to have the material for an entire unit of the course in
a single document, especially when reviewing the material later. Please report errors in these notes, even
typos. This summary is not a sufficient substitute for attending class, reading the associated code, etc.

Contents

Welcome to Programming Languages . 1

ML Expressions and Variable Bindings . 2

Using use . 3

Variables are Immutable . 4

Function Bindings . 4

Pairs and Other Tuples . 5

Lists . 6

Let Expressions . 8

Options . 10

Some Other Expressions and Operators . 11

Lack of Mutation and Benefits Thereof . 11

Welcome to Programming Languages

The top of the course web page has four documents with important information not repeated here. They
are the syllabus, the academic-integrity policy, the challenge-program policy, and a description of how this
course relates to a course offered on Coursera. Read these documents thoroughly.

A course titled, “Programming Languages” can mean many different things. For us, it means the opportunity
to learn the fundamental concepts that appear in one form or another in almost every programming language.
We will also get some sense of how these concepts “fit together” to provide what programmers need in a
language. And we will use different languages to see how they can take complementary approaches to
representing these concepts. All of this is intended to make you a better software developer, in any language.

Many people would say this course “teaches” the 3 languages ML, Racket, and Ruby, but that is fairly
misleading. We will use these languages to learn various paradigms and concepts because they are well-
suited to do so. If our goal were just to make you as productive as possible in these three languages, the
course material would be very different. That said, being able to learn new languages and recognize the
similarities and differences across languages is an important goal.

Most of the course will use functional programming (both ML and Racket are functional languages), which
emphasizes immutable data (no assignment statements) and functions, especially functions that take and
return other functions. As we will discuss later in the course, functional programming does some things
exactly the opposite of object-oriented programming but also has many similarities. Functional programming
is not only a very powerful and elegant approach, but learning it helps you better understand all styles of
programming.

1

The conventional thing to do at the very beginning of a course is to motivate the course, which in this case
would explain why you should learn functional programming and more generally why it is worth learning
different languages, paradigms, and language concepts. We will largely delay this discussion for a few weeks.
It is simply too important to cover when most students are more concerned with getting a sense of what the
work in the course will be like, and, more importantly, it is a much easier discussion to have after we have
built some shared terminology and experience. Motivation does matter; let’s take a “rain-check” with the
promise that it will be well worth it.

ML Expressions and Variable Bindings

So let’s just start “learning ML” but in a way that teaches core programming-languages concepts rather
than just “getting down some code that works.” Therefore, pay extremely careful attention to the words
used to describe the very, very simple code we start with. We are building a foundation that we will expand
very quickly over this week and next week. Do not yet try to relate what you see back to what you already
know in other languages as that is likely to lead to struggle.

An ML program is a sequence of bindings. Each binding gets type-checked and then (assuming it type-checks)
evaluated. What type (if any) a binding has depends on a static environment,1 which is roughly the types
of the preceding bindings in the file. How a binding is evaluated depends on a dynamic environment, which
is roughly the values of the preceding bindings in the file. When we just say environment, we usually mean
dynamic environment. Sometimes context is used as a synonym for static environment.

There are several kinds of bindings, but for now let’s consider only a variable binding, which in ML has this
syntax :

val x = e;

Here, val is a keyword, x can be any variable, and e can be any expression. We will learn many ways to
write expressions. The semicolon is optional in a file, but necessary in the read-eval-print loop to let the
interpreter know that you are done typing the binding.

We now know a variable binding’s syntax (how to write it), but we still need to know its semantics (how it
type-checks and evaluates). Mostly this depends on the expression e. To type-check a variable binding, we
use the “current static environment” (the types of preceding bindings) to type-check e (which will depend on
what kind of expression it is) and produce a “new static environment” that is the current static environment
except with x having type t where t is the type of e. Evaluation is analogous: To evaluate a variable
binding, we use the “current dynamic environment” (the values of preceding bindings) to evaluate e (which
will depend on what kind of expression it is) and produce a “new dynamic environment” that is the current
environment except with x having the value v where v is the result of evaluating e.

A value is an expression that, “has no more computation to do,” i.e., there is no way to simplify it. As
described more generally below, 17 is a value, but 8+9 is not. All values are expressions. Not all expressions
are values.

This whole description of what ML programs mean (bindings, expressions, types, values, environments) may
seem awfully theoretical or esoteric, but it is exactly the foundation we need to give precise and concise
definitions for several different kinds of expressions. Here are several such definitions:

• Integer constants:

– Syntax: a sequence of digits

1The word static here has a tenuous connection to its use in Java/C/C++, but too tenuous to explain at this point.

2

– Type-checking: type int in any static environment

– Evaluation: to itself in any dynamic environment (it is a value)

• Addition:

– Syntax: e1+e2 where e1 and e2 are expressions

– Type-checking: type int but only if e1 and e2 have type int in the same static environment, else
does not type-check

– Evaluation: evaluate e1 to v1 and e2 to v2 in the same dynamic environment and then produce
the sum of v1 and v2

• Variables:

– Syntax: a sequence of letters, underscores, etc.

– Type-checking: look up the variable in the current static environment and use that type

– Evaluation: look up the variable in the current dynamic environment and use that value

• Conditionals:

– Syntax is if e1 then e2 else e3 where e1, e2, and e3 are expressions

– Type-checking: using the current static environment, a conditional type-checks only if (a) e1 has
type bool and (b) e2 and e3 have the same type. The type of the whole expression is the type of
e2 and e3.

– Evaluation: under the current dynamic environment, evaluate e1. If the result is true, the result
of evaluating e2 under the current dynamic environment is the overall result. If the result is
false, the result of evaluating e3 under the current dynamic environment is the overall result.

• Boolean constants:

– Syntax: either true or false

– Type-checking: type bool in any static environment

– Evaluation: to itself in any dynamic environment (it is a value)

• Less-than comparison:

– Syntax: e1 < e2 where e1 and e2 are expressions

– Type-checking: type bool but only if e1 and e2 have type int in the same static environment,
else does not type-check

– Evaluation: evaluate e1 to v1 and e2 to v2 in the same dynamic environment and then produce
true if v1 is less than v2 and false otherwise

Whenever you learn a new construct in a programming language, you should ask these three
questions: What is the syntax? What are the type-checking rules? What are the evaluation
rules?

Using use

When using the read-eval-print loop, it is very convenient to add a sequence of bindings from a file.

use "foo.sml";

does just that. Its type is unit and its result is () (the only value of type unit), but its effect is to include
all the bindings in the file "foo.sml".

3

Variables are Immutable

Bindings are immutable. Given val x = 8+9; we produce a dynamic environment where x maps to 17. In
this environment, x will always map to 17; there is no “assignment statement” in ML for changing what
x maps to. That is very useful if you are using x. You can have another binding later, say val x = 19;,
but that just creates a different environment where the later binding for x shadows the earlier one. This
distinction will be extremely important when we define functions that use variables.

Function Bindings

Recall that an ML program is a sequence of bindings. Each binding adds to the static environment (for
type-checking subsequent bindings) and to the dynamic environment (for evaluating subsequent bindings).
We already introduced variable bindings; we now introduce function bindings, i.e., how to define and use
functions. We will then learn how to build up and use larger pieces of data from smaller ones using pairs
and lists.

A function is sort of like a method in languages like Java — it is something that is called with arguments
and has a body that produces a result. Unlike a method, there is no notion of a class, this, etc. We also do
not have things like return statements. A simple example is this function that computes xy assuming y ≥ 0:

fun pow (x:int, y:int) = (* correct only for y >= 0 *)

if y=0

then 1

else x * pow(x,y-1)

Syntax:

The syntax for a function binding looks like this (we will generalize this definition a little later in the course):

fun x0 (x1 : t1, ..., xn : tn) = e

This is a binding for a function named x0. It takes n arguments x1, ... xn of types t1, ..., tn and has an
expression e for its body. As always, syntax is just syntax — we must define the typing rules and evaluation
rules for function bindings. But roughly speaking, in e, the arguments are bound to x1, ... xn and the result
of calling x0 is the result of evaluating e.

Type-checking:

To type-check a function binding, we type-check the body e in a static environment that (in addition to
all the earlier bindings) maps x1 to t1, ... xn to tn and x0 to t1 * ... * tn -> t. Because x0 is in the
environment, we can make recursive function calls, i.e., a function definition can use itself. The syntax of
a function type is “argument types” -> “result type” where the argument types are separated by * (which
just happens to be the same character used in expressions for multiplication). For the function binding
to type-check, the body e must have the type t, i.e., the result type of x0. That makes sense given the
evaluation rules below because the result of a function call is the result of evaluating e.

But what, exactly, is t – we never wrote it down? It can be any type, and it is up to the type-checker (part
of the language implementation) to figure out what t should be such that using it for the result type of x0
makes, “everything work out.” For now, we will take it as magical, but type inference (figuring out types
not written down) is a very cool feature of ML discussed later in the course. It turns out that in ML you

4

almost never have to write down types. Soon the argument types t1, ..., tn will also be optional but not
until we learn pattern matching a little later.2

After a function binding, x0 is added to the static environment with its type. The arguments are not added
to the top-level static environment — they can be used only in the function body.

Evaluation:

The evaluation rule for a function binding is trivial: A function is a value — we simply add x0 to the envi-
ronment as a function that can be called later. As expected for recursion, x0 is in the dynamic environment
in the function body and for subsequent bindings (but not, unlike in say Java, for preceding bindings, so the
order you define functions is very important).

Function calls:

Function bindings are useful only with function calls, a new kind of expression. The syntax is e0 (e1,...,en)

with the parentheses optional if there is exactly one argument. The typing rules require that e0 has a
type that looks like t1*...*tn->t and for 1 ≤ i ≤ n, ei has type ti. Then the whole call has type t.
Hopefully, this is not too surprising. For the evaluation rules, we use the environment at the point of
the call to evaluate e0 to v0, e1 to v1, ..., en to vn. Then v0 must be a function (it will be assuming the
call type-checked) and we evaluate the function’s body in an environment extended such that the function
arguments map to v1, ..., vn.

Exactly which environment is it we extend with the arguments? The environment that “was current” when
the function was defined, not the one where it is being called. This distinction will not arise right now, but
we will discuss it in great detail later.

Putting all this together, we can determine that this code will produce an environment where ans is 64:

fun pow (x:int, y:int) = (* correct only for y >= 0 *)

if y=0

then 1

else x * pow(x,y-1)

fun cube (x:int) =

pow(x,3)

val ans = cube(4)

Pairs and Other Tuples

Programming languages need ways to build compound data out of simpler data. The first way we will learn
about in ML is pairs. The syntax to build a pair is (e1,e2) which evaluates e1 to v1 and e2 to v2 and
makes the pair of values (v1,v2), which is itself a value. Since v1 and/or v2 could themselves be pairs
(possibly holding other pairs, etc.), we can build data with several “basic” values, not just two, say, integers.
The type of a pair is t1*t2 where t1 is the type of the first part and t2 is the type of the second part.

Just like making functions is useful only if we can call them, making pairs is useful only if we can later
retrieve the pieces. Until we learn pattern-matching, we will use #1 and #2 to access the first and second
part. The typing rule for #1 e or #2 e should not be a surprise: e must have some type that looks like
ta * tb and then #1 e has type ta and #2 e has type tb.

Here are several example functions using pairs. div_mod is perhaps the most interesting because it uses a

2The way we are using pair-reading constructs like #1 in this unit and Homework 1 requires these explicit types.

5

pair to return an answer that has two parts. This is quite pleasant in ML, whereas in Java (for example)
returning two integers from a function requires defining a class, writing a constructor, creating a new object,
initializing its fields, and writing a return statement.

fun swap (pr : int*bool) =

(#2 pr, #1 pr)

fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =

(#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y : int) = (* note: returning a pair is a real pain in Java *)

(x div y, x mod y)

fun sort_pair (pr : int*int) =

if (#1 pr) < (#2 pr)

then pr

else ((#2 pr),(#1 pr))

In fact, ML supports tuples by allowing any number of parts. For example, a 3-tuple (i.e., a triple) of integers
has type int*int*int. An example is (7,9,11) and you retrieve the parts with #1 e, #2 e, and #3 e where
e is an expression that evaluates to a triple.

Pairs and tuples can be nested however you want. For example, (7,(true,9)) is a value of type int * (bool * int),
which is different from ((7,true),9) which has type (int * bool) * int or (7,true,9) which has type
int * bool * int.

Lists

Though we can nest pairs of pairs (or tuples) as deep as we want, for any variable that has a pair, any
function that returns a pair, etc. there has to be a type for a pair and that type will determine the amount
of “real data.” Even with tuples the type specifies how many parts it has. That is often too restrictive; we
may need a list of data (say integers) and the length of the list is not yet known when we are type-checking
(it might depend on a function argument). ML has lists, which are more flexible than pairs because they can
have any length, but less flexible because all the elements of any particular list must have the same type.

The empty list, with syntax [], has 0 elements. It is a value, so like all values it evaluates to itself immediately.
It can have type t list for any type t, which ML writes as ’a list (pronounced “quote a list” or “alpha
list”). In general, the type t list describes lists where all the elements in the list have type t. That holds
for [] no matter what t is.

A non-empty list with n values is written [v1,v2,...,vn]. You can make a list with [e1,...,en] where
each expression is evaluated to a value. It is more common to make a list with e1 :: e2, pronounced “e1
consed onto e2.” Here e1 evaluates to an “item of type t” and e2 evaluates to a “list of t values” and the
result is a new list that starts with the result of e1 and then is all the elements in e2.

As with functions and pairs, making lists is useful only if we can then do something with them. As with
pairs, we will change how we use lists after we learn pattern-matching, but for now we will use three functions
provided by ML. Each takes a list as an argument.

• null evaluates to true for empty lists and false for nonempty lists.

• hd returns the first element of a list, raising an exception if the list is empty.

6

• tl returns the tail of a list (a list like its argument but without the first element), raising an exception
if the list is empty.

Here are some simple examples of functions that take or return lists:

fun sum_list (xs : int list) =

if null xs

then 0

else hd(xs) + sum_list(tl xs)

fun countdown (x : int) =

if x=0

then []

else x :: countdown(x-1)

fun append (xs : int list, ys : int list) =

if null xs

then ys

else (hd xs) :: append(tl xs, ys)

Functions that make and use lists are almost always recursive because a list has an unknown length. To
write a recursive function, the thought process involves thinking about the base case — for example, what
should the answer be for an empty list — and the recursive case — how can the answer be expressed in
terms of the answer for the rest of the list.

When you think this way, many problems become much simpler in a way that surprises people who are used
to thinking about while loops and assignment statements. A great example is the append function above
that takes two lists and produces a list that is one list appended to the other. This code implements an
elegant recursive algorithm: If the first list is empty, then we can append by just evaluating to the second
list. Otherwise, we can append the tail of the first list to the second list. That is almost the right answer,
but we need to “cons on” (using :: has been called “consing” for decades) the first element of the first list.
There is nothing magical here — we keep making recursive calls with shorter and shorter first lists and then
as the recursive calls complete we add back on the list elements removed for the recursive calls.

Finally, we can combine pairs and lists however we want without having to add any new features to our
language. For example, here are several functions that take a list of pairs of integers. Notice how the
last function reuses earlier functions to allow for a very short solution. This is very common in functional
programming. In fact, it should bother us that firsts and seconds are so similar but we do not have them
share any code. We will learn how to fix that later.

fun sum_pair_list (xs : (int * int) list) =

if null xs

then 0

else #1 (hd xs) + #2 (hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int * int) list) =

if null xs

then []

else (#1 (hd xs))::(firsts(tl xs))

fun seconds (xs : (int * int) list) =

7

if null xs

then []

else (#2 (hd xs))::(seconds(tl xs))

fun sum_pair_list2 (xs : (int * int) list) =

(sum_list (firsts xs)) + (sum_list (seconds xs))

Let Expressions

Let-expressions are an absolutely crucial feature that allows for local variables in a very simple, general,
and flexible way. Let-expressions are crucial for style and for efficiency. A let-expression lets us have local
variables. In fact, it lets us have local bindings of any sort, including function bindings. Because it is a kind
of expression, it can appear anywhere an expression can.

Syntactically, a let-expression is:

let b1 b2 ... bn in e end

where each bi is a binding and e is an expression.

The type-checking and semantics of a let-expression are much like the semantics of the top-level bindings
in our ML program. We evaluate each binding in turn, creating a larger environment for the subsequent
bindings. So we can use all the earlier bindings for the later ones, and we can use them all for e. We call the
scope of a binding “where it can be used,” so the scope of a binding in a let-expression is the later bindings
in that let-expression and the “body” of the let-expression (the e). The value e evaluates to is the value for
the entire let-expression, and, unsurprisingly, the type of e is the type for the entire let-expression.

For example, this expression evaluates to 7; notice how one inner binding for x shadows an outer one.

let val x = 1

in

(let val x = 2 in x+1 end) + (let val y = x+2 in y+1 end)

end

Also notice how let-expressions are expressions so they can appear as a subexpression in an addition (though
this example is silly and bad style because it is hard to read).

Let-expressions can bind functions too, since functions are just another kind of binding. If a helper function
is needed by only one other function and is unlikely to be useful elsewhere, it is good style to bind it locally.
For example, here we use a local helper function to help produce the list [1,2,...,x]:

fun countup_from1 (x:int) =

let fun count (from:int, to:int) =

if from=to

then to::[]

else from :: count(from+1,to)

in

count(1,x)

end

However, we can do better. When we evaluate a call to count, we evaluate count’s body in a dynamic
environment that is the environment where count was defined, extended with bindings for count’s arguments.

8

The code above does not really utilize this: count’s body uses only from, to, and count (for recursion). It
could also use x, since that is in the environment when count is defined. Then we do not need to at all,
since in the code above it always has the same value as x. So this is better style:

fun countup_from1_better (x:int) =

let fun count (from:int) =

if from=x

then x::[]

else from :: count(from+1)

in

count 1

end

This technique — define a local function that uses other variables in scope — is a hugely common and
convenient thing to do in functional programming. It is a shame that many non-functional languages have
little or no support for doing something like it.

Local variables are often good style for keeping code readable. They can be much more important than that
when they bind to the results of potentially expensive computations. For example, consider this code that
does not use let-expressions:

fun bad_max (xs : int list) =

if null xs

then 0 (* note: bad style; see below *)

else if null (tl xs)

then hd xs

else if hd xs > bad_max(tl xs)

then hd xs

else bad_max(tl xs)

If you call bad_max with countup_from1 30, it will make approximately 230 (over one billion) recursive calls
to itself. The reason is an “exponential blowup” — the code calls bad_max(tl xs) twice and each of those
calls call bad_max two more times (so four total) and so on. This sort of programming “error” can be difficult
to detect because it can depend on your test data (if the list counts down, the algorithm makes only 30
recursive calls instead of 230).

We can use let-expressions to avoid repeated computations. This version computes the max of the tail of
the list once and stores the resulting value in tl_ans.

fun good_max (xs : int list) =

if null xs

then 0 (* note: bad style; see below *)

else if null (tl xs)

then hd xs

else

(* for style, could also use a let-binding for hd xs *)

let val tl_ans = good_max(tl xs)

in

if hd xs > tl_ans

then hd xs

else tl_ans

end

9

Options

The previous example does not properly handle the empty list — it returns 0. This is bad style because
0 is really not the maximum value of 0 numbers. There is no good answer, but we should deal with this
case reasonably. One possibility is to raise an exception; you can learn about ML exceptions on your own
if you are interested before we discuss them later in the course. Instead, let’s change the return type to
either return the maximum number or indicate the input list was empty so there is no maximum. Given the
constructs we have, we could “code this up” by return an int list, using [] if the input was the empty list
and a list with one integer (the maximum) if the input list was not empty.

While that works, lists are “overkill” — we will always return a list with 0 or 1 elements. So a list is not
really a precise description of what we are returning. The ML library has “options” which are a precise
description: an option value has either 0 or 1 thing: NONE is an option value “carrying nothing” whereas
SOME e evaluates e to a value v and becomes the option carrying the one value v. The type of NONE is
’a option and the type of SOME e is t option if e has type t.

Given a value, how do you use it? Just like we have null to see if a list is empty, we have isSome which
evaluates to false if its argument is NONE. Just like we have hd and tl to get parts of lists (raising an
exception for the empty list), we have valOf to get the value carried by SOME (raising an exception for NONE).

Using options, here is a better version with return type int option:

fun better_max (xs : int list) =

if null xs

then NONE

else

let val tl_ans = better_max(tl xs)

in if isSome tl_ans andalso valOf tl_ans > hd xs

then tl_ans

else SOME (hd xs)

end

The version above works just fine and is a reasonable recursive function because it does not repeat any
potentially expensive computations. But it is both awkward and a little inefficient to have each recursive
call except the last one create an option with SOME just to have its caller access the value underneath. Here
is an alternative approach where we use a local helper function for non-empty lists and then just have the
outer function return an option. Notice the helper function would raise an exception if called with [], but
since it is defined locally, we can be sure that will never happen.

fun better_max2 (xs : int list) =

if null xs

then NONE

else let (* fine to assume argument nonempty because it is local *)

fun max_nonempty (xs : int list) =

if null (tl xs) (* xs must not be [] *)

then hd xs

else let val tl_ans = max_nonempty(tl xs)

in

if hd xs > tl_ans

then hd xs

else tl_ans

end

10

in

SOME (max_nonempty xs)

end

Some Other Expressions and Operators

ML has all the arithmetic and logical operators you need, but the syntax is sometimes different than in most
languages. Here is a brief list of some additional forms of expressions we will find useful:

• e1 andalso e2 is logical-and: It evaluates e2 only if e1 evaluates to true. The result is true if e1
and e2 evaluate to true. Naturally, e1 and e2 must both have type bool and the entire expression
also has type bool. In many languages, such expressions are written e1 && e2, but that is not the ML
syntax, nor is e1 and e2 (but and is a keyword we will encounter later for a different purpose). Using
e1 andalso e2 is generally better style than the equivalent if e1 then e2 else false.

• e1 orelse e2 is logical-or: It evaluates e2 only if e1 evaluates to false. The result is true if e1
or e2 evaluates to true. Naturally, e1 and e2 must both have type bool and the entire expression
also has type bool. In many languages, such expressions are written e1 || e2, but that is not
the ML syntax, nor is e1 or e2. Using e1 orelse e2 is generally better style than the equivalent
if e1 then true else e2.

• not e is logical-negation. not is just a provided function of type bool->bool that we could have
defined ourselves as fun not x = if x then false else true. In many languages, such expressions
are written !e, but in ML the ! operator means something else (related to mutable variables, which
we will not use).

• You can compare many values, including integers, for equality using e1 = e2.

• Instead of writing not (e1 = e2) to see if two numbers are different, better style is e1 <> e2. In many
languages, the syntax is e1 != e2, whereas ML’s <> can be remembered as, “less than or greater than.”

• The other arithmetic comparisons have the same syntax as in most languages: >, <, >=, <=.

• Subtraction is written e1 - e2, but it must take two operands, so you cannot just write - e for
negation. For negation, the correct syntax is ~ e, in particular negative numbers are written like ~7,
not -7. Using ~e is better style than 0 - e, but equivalent for integers.

Lack of Mutation and Benefits Thereof

In ML, there is no way to change the contents of a binding, a tuple, or a list. If x maps to some value like the
list of pairs [(3,4),(7,9)] in some environment, then x will forever map to that list in that environment.
There is no assignment statement that changes x to map to a different list. (You can introduce a new
binding that shadows x, but that will not affect any code that looks up the “original” x in an environment.)
There is no assignment statement that lets you change the head or tail of a list. And there is no assignment
statement that lets you change the contents of a tuple. So we have constructs for building compound data
and accessing the pieces, but no constructs for mutating the data we have built.

This is a really powerful feature! That may surprise you: how can a language not having something be
a feature? Because if there is no such feature, then when you are writing your code you can rely on no
other code doing something that would make your code wrong, incomplete, or difficult to use. Having

11

immutable data is probably the most important “non-feature” a language can have, and it is one of the main
contributions of functional programming.

While there are various advantages to immutable data, here we will focus on a big one: it makes sharing
and aliasing irrelevant. Let’s re-consider two examples from above before picking on Java (and every other
language where mutable data is the norm and assignment statements run rampant).

fun sort_pair (pr : int*int) =

if (#1 pr) < (#2 pr)

then pr

else ((#2 pr),(#1 pr))

In sort_pair, we clearly build and return a new pair in the else-branch, but in the then-branch, do we
return a copy of the pair referred to by pr or do we return an alias, where a caller like:

val x = (3,4)

val y = sort_pair x

would now have x and y be aliases for the same pair? The answer is you cannot tell — there is no construct
in ML that can figure out whether or not x and y are aliases, and no reason to worry that they might be.
If we had mutation, life would be different. Suppose we could say, “change the second part of the pair x is
bound to so that it holds 5 instead of 4.” Then we would have to wonder if #2 y would be 4 or 5.

In case you are curious, we would expect that the code above would create aliasing: by returning pr, the
sort_pair function would return an alias to its argument. That is more efficient than this version, which
would create another pair with exactly the same contents:

fun sort_pair (pr : int*int) =

if (#1 pr) < (#2 pr)

then (#1 pr, #2 pr)

else ((#2 pr),(#1 pr))

Making the new pair (#1 pr, #2 pr) is bad style, since pr is simpler and will do just as well. Yet in
languages with mutation, programmers make copies like this all the time, exactly to prevent aliasing where
doing an assignment using one variable like x causes unexpected changes to using another variable like y. In
ML, no users of sort_pair can ever tell whether we return a new pair or not.

Our second example is our elegant function for list append:

fun append (xs : int list, ys : int list) =

if null xs

then ys

else (hd xs) :: append(tl xs, ys)

We can ask a similar question: Does the list returned share any elements with the arguments? Again the
answer does not matter because no caller can tell. And again the answer happens to be yes: we build a new
list that “reuses” all the elements of ys. This saves space, but would be very confusing if someone could
later mutate ys. Saving space is a nice advantage of immutable data, but so is simply not having to worry
about whether things are aliased or not when writing down elegant algorithms.

In fact, tl itself thankfully introduces aliasing (though you cannot tell): it returns (an alias to) the tail of
the list, which is always “cheap,” rather than making a copy of the tail of the list, which is “expensive” for
long lists.

12

The append example is very similar to the sort_pair example, but it is even more compelling because it
is hard to keep track of potential aliasing if you have many lists of potentially large lengths. If I append
[1,2] to [3,4,5], I will get some list [1,2,3,4,5] but if later someone can change the [3,4,5] list to be
[3,7,5] is the appended list still [1,2,3,4,5] or is it now [1,2,3,7,5]?

In the analogous Java program, this is a crucial question, which is why Java programmers must obsess over
when references to old objects are used and when new objects are created. There are times when obsessing
over aliasing is the right thing to do and times when avoiding mutation is the right thing to do — functional
programming will help you get better at the latter.

For a final example, the following Java is the key idea behind an actual security hole in an important
(and subsequently fixed) Java library. Suppose we are maintaining permissions for who is allowed to access
something like a file on the disk. It is fine to let everyone see who has permission, but clearly only those
that do have permission can actually use the resource. Consider this wrong code (some parts omitted if not
relevant):

class ProtectedResource {

private Resource theResource = ...;

private String[] allowedUsers = ...;

public String[] getAllowedUsers() {

return allowedUsers;

}

public String currentUser() { ... }

public void useTheResource() {

for(int i=0; i < allowedUsers.length; i++) {

if(currentUser().equals(allowedUsers[i])) {

... // access allowed: use it

return;

}

}

throw new IllegalAccessException();

}

}

Can you find the problem? Here it is: getAllowedUsers returns an alias to the allowedUsers array, so any
user can gain access by doing getAllowedUsers()[0] = currentUser(). Oops! This would not be possible
if we had some sort of array in Java that did not allow its contents to be updated. Instead, in Java we often
have to remember to make a copy. The correction below shows an explicit loop to show in detail what must
be done, but better style would be to use a library method like System.arraycopy or similar methods in
the Arrays class — these library methods exist because array copying is necessarily common, in part due to
mutation.

public String[] getAllowedUsers() {

String[] copy = new String[allowedUsers.length];

for(int i=0; i < allowedUsers.length; i++)

copy[i] = allowedUsers[i];

return copy;

}

13

