
CSE 341
Section 9

Fall 2018

Adapted from slides by Nick Mooney, Nicholas Shahan, Cody Schroeder, and Dan Grossman

Today’s Agenda

• Double Dispatch Again

• The Visitor Pattern

• Mixins

2

Double Dispatch

Dispatch Overview
Dispatch is the runtime procedure for looking up which function to call
based on the parameters given:

• Ruby (and Java) use Single Dispatch on the implicit self (or “this”)
parameter

• Uses runtime class of self to lookup the method when a call is made
• This is what you learned in CSE 143

• Double Dispatch uses the runtime classes of both self and a single
method parameter

• Ruby/Java do not have this, but we can emulate it
• This is what you will do in HW7

• You can dispatch on any number of the parameters and the general term
for this is Multiple Dispatch or Multimethods

4

Emulating Double Dispatch
• To emulate double dispatch in Ruby (on HW7) just use the built-in single

dispatch procedure twice!
• Have the principal method immediately call another method on its

first parameter, passing self as an argument
• The second call will implicitly know the class of the self parameter
• It will also know the class of the first parameter of the principal

method, because of Single Dispatch

• There are other ways to emulate double dispatch
• Found as an idiom in SML by using case expressions

5

Double Dispatch Example: RPS

● Suppose we wanted to code up a game of “Rock-Paper-Scissors”:
○ A game that is played in rounds with 2 players.
○ Each player gets to pick a weapon: one of “Rock”, “Paper”, or

“Scissors”.
● Each combination results in a winner/loser (except when both are the

same):
○ Rock beats Scissors
○ Paper beats Rock
○ Scissors beats Paper

Double Dispatch Example: RPS
● What are the different combinations of games?

○ Player 1 fights Player 2 with a tool, and Player 2 responds, which
determines the outcome.

Rock Paper Scissors

Rock Tie Paper wins Rock wins

Paper Paper wins Tie Scissor wins

Scissors Rock wins Scissor wins Tie

Player 1

Player 2

Double Dispatch Example: RPS
● How could we represent this in an OOP way?

Rock Paper Scissors

Rock Tie Paper wins Rock wins

Paper Paper wins Tie Scissor wins

Scissors Rock wins Scissor wins Tie

Class 1

Class 2

○ How does “Class 1” fight “Class 2”? How do we encode
the “tool”? How do we encode the “outcome”?

Double Dispatch
Example: RPS
Code!

Double Dispatch Exercise: What’s the table? (hint, it’s 2x2)

1
0

class A
def f x

x.fWithA self
end

def fWithA a
"(a, a) case"

end

def fWithB b
"(b, a) case"

end
end

class B
def f x

x.fWithB self
 end

def fWithA a
"(a, b) case"

end

def fWithB b
"(b, b) case"

end
end

Double Dispatch Exercise: What’s the table?

A B

A (a,a) case (b,a) case

B (a,b) case (b,b) case

Class 1

Class 2

Extending RPS I
● What if we wanted to extend our game to add an action to convert each of

the tools to strings?
○ What would we have to change so that we could still play this game, but

with another action?

Rock Paper Scissors

Rock Tie Paper wins Rock wins

Paper Paper wins Tie Scissor wins

Scissors Rock wins Scissor wins Tie

toString* Rock Paper Scissors

* note: not a Class, but a method, because it only operates on 1 class, not 2.

The Visitor Pattern

The Visitor Pattern
• A template for handling a functional composition in OOP

• OOP wants to group code by classes

• We want code grouped by functions

• This makes it easier to add operations at a later time.

• Relies on Double Dispatch!!!

• Dispatch based on (VisitorType, ValueType) pairs.

• Often used to compute over AST’s (abstract syntax trees)

• Heavily used in compilers

14

Visitor Example: RPS
Code!

Extending RPS II
● What if we wanted to extend our game to add a new tool: Laser?

○ What would we have to change so that we could still play this
game, but with 4 tools instead of 3?

Rock Paper Scissors Laser

Rock Tie Paper wins Rock wins Laser wins

Paper Paper wins Tie Scissor wins Laser wins

Scissors Rock wins Scissor wins Tie Laser wins

Laser Laser wins Laser wins Laser wins Tie

Have to do it the hard
way… :(
Is functional better?

Mixins
• Collection of methods

• Unlike class, you cannot instantiate it

• Can include any number of mixins

• Provides powerful extensions to the class with little cost

Mixins

• It’s just “Copy and paste the code into the class”
• Will override existing code

• Have access to instance functions

• Have access to instance variables

Mixin Example
module Doubler
 def double
 self + self # assume included in classes w/ +
 end
end
class String
 include Doubler
end
class AnotherPt
 attr_accessor :x, :y
 include Doubler
 def + other
 ans = AnotherPt.new
 ans.x = self.x + other.x
 ans.y = self.y + other.y
 ans
end

Method Lookup Rules

1. Current class
2. Current class’s mixins

a. Latest included mixin
b. …..
c. Earliest included mixin

3. Current class’s super class
4. Current class’s super class’s mixins
5. …..

Comparable

It provides you methods to compute <, >, ==, !=, >=, <=
What’s needed?
• Define function ⇔ (spaceship operator)

• Return negative, 0 or positive number

Very similar to Java Comparable interface which requires
CompareTo

Enumerable

It provides you methods to iterator over the object -> supports
map, find!

What’s needed?
• Define function each

• Each will either call each of other object or will yield
result

Very similar to Java Iterable interface

