
CSE 341
Section 4

Autumn 2018

With thanks to Nick Mooney & Spencer Pearson

Today’s Agenda

• Mutual Recursion

• Module System Example

• Practice with Currying and High Order Functions

2

Mutual Recursion

• What if we need function f to call g, and function g
to call f?

• This is a common idiom

3

fun earlier x =
...
later x
...

fun later x =
...
earlier x
...

Unfortunately this
does not work ☹

Mutual Recursion Workaround
• We can use higher order functions to get this

working

• It works, but there has got to be a better way!

4

fun earlier f x =
...
f x
...

fun later x =
...
earlier later x
...

Mutual Recursion with and
• SML has a keyword for that

• Works with mutually recursive datatype
bindings too

5

fun earlier x =
...
later x
...

and later x =
...
earlier x
...

Module System

• Good for organizing code, and managing
namespaces (useful, relevant)

• Good for maintaining invariants (interesting)

6

Deja vu?

We have similar things in Java!

7

It’s called interface!

Let’s implement a bank!
A bank should be able...

1. To open a new account
2. To deposit money
3. To withdraw money

Matching signature and struct

Will it match?

Matching signature and struct

Will it match?

Matching signature and struct

Will it match?

Matching signature and struct

Will it match?

Matching signature and struct

Will it match?

Matching signature and struct

Will it match?

Matching signature and struct

Will it match?

Interesting Examples of Invariants

• Ordering of operations
• e.g. insert, then query

• Data kept in good state
• e.g. fractions in lowest terms

• Policies followed
• e.g. don't allow shipping request without purchase

order

16

Currying and High Order Functions

• Some examples:
• List.map
• List.filter
• List.foldl

17

Practice: flatten

● Type:
○ ‘a list list -> ‘a list

● Behavior:
○ Does this look familiar?
○ Returns concatenation of list of lists.

Code: flatten

fun concat(acc, xs) = xs @ acc

fun flatten xs = List.foldl concat [] xs

Alternative 1: op@

fun flatten2 xs = List.foldl (op@) [] xs

● Does this work? Why/why not?
● This returns the reversed concatenation!

Alternative 2: better style

val flatten3 = List.foldl concat []

● Does this work? Why/why not?
● Nope, value restriction :(

Practice: flat_map

● Type:
○ ‘a list list -> ‘a list

● Behavior:
○ Does this look familiar?
○ Returns the concatenation of a list of list as one list.

Code: flat_map

fun flat_map f xs =

 case xs of

 [] => []

 | x::xs' => (f x) @ flat_map f xs'

Practice: only_valid

● Type:
○ (int * int) list -> (int * int) list

● Behavior:
○ Does this look familiar?
○ Returns a list of int tuples with the elements of the input list of

int tuples that match a certain criteria.
○ Let’s just say the criteria is that both ints add up to 17

Code: only_valid

fun is_valid(x,y) = x + y = 17

val only_valid = List.filter is_valid

