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Today’s Agenda

• Mutual Recursion

• Module System Example

• Practice with Currying and High Order Functions
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Mutual Recursion

• What if we need function f to call g, and function g 
to call f?

• This is a common idiom
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fun earlier x =
...
later x
...

fun later x =
...
earlier x
...

Unfortunately this 
does not work ☹



Mutual Recursion Workaround
• We can use higher order functions to get this 

working

• It works, but there has got to be a better way!
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fun earlier f x =
...
f x
...

fun later x =
...
earlier later x
...



Mutual Recursion with and
• SML has a keyword for that

• Works with mutually recursive datatype 
bindings  too
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fun earlier x =
...
later x
...

and later x =
...
earlier x
...



Module System

• Good for organizing code, and managing 
namespaces (useful, relevant)

• Good for maintaining invariants (interesting)
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Deja vu?

We have similar things in Java!
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It’s called interface!



Let’s implement a bank!
A bank should be able...

1. To open a new account
2. To deposit money
3. To withdraw money



Matching signature and struct

Will it match?
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Interesting Examples of Invariants

• Ordering of operations
• e.g. insert, then query

• Data kept in good state
• e.g. fractions in lowest terms

• Policies followed
• e.g. don't allow shipping request without purchase 

order
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Currying and High Order Functions

• Some examples:
• List.map
• List.filter
• List.foldl
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Practice: flatten

● Type: 
○ ‘a list list -> ‘a list

● Behavior: 
○ Does this look familiar? 
○ Returns concatenation of list of lists.  



Code: flatten

fun concat(acc, xs) = xs @ acc

fun flatten xs = List.foldl  concat [] xs



Alternative 1: op@

fun flatten2 xs = List.foldl (op@) [] xs

● Does this work? Why/why not? 
● This returns the reversed concatenation!



Alternative 2: better style

val flatten3 = List.foldl concat []

● Does this work? Why/why not? 
● Nope, value restriction :( 



Practice: flat_map

● Type: 
○ ‘a list list -> ‘a list

● Behavior: 
○ Does this look familiar? 
○ Returns the concatenation of a list of list as one list. 



Code: flat_map

fun flat_map f xs =

  case xs of

      [] => []

   |  x::xs' => (f x) @ flat_map f xs'



Practice: only_valid

● Type: 
○ (int * int) list -> (int * int) list

● Behavior: 
○ Does this look familiar? 
○ Returns a list of int tuples with the elements of the input list of 

int tuples that match a certain criteria. 
○ Let’s just say the criteria is that both ints add up to 17



Code: only_valid

fun is_valid(x,y) = x + y = 17

val only_valid = List.filter is_valid

  


