
CSE 341: Section 4
Tam Dang

University of Washington

October 18, 2018

Outline

Mutual Recursion

Modules in ML

Currying

Mutual Recursion
Even or odd?

It may be desirable to define a function f that calls a function g, but also
allow g to call f:

fun is_even x =

if x = 0

then true

else is_odd (x - 1)

fun is_odd x =

if x = 0

then false

else is_even (x - 1)

What could go wrong here?
At the time we’re defining is_even, is_odd is undefined

Mutual Recursion
Even or odd?

It may be desirable to define a function f that calls a function g, but also
allow g to call f:

fun is_even x =

if x = 0

then true

else is_odd (x - 1)

fun is_odd x =

if x = 0

then false

else is_even (x - 1)

What could go wrong here?
At the time we’re defining is_even, is_odd is undefined

Mutual Recursion
Even or odd?

It may be desirable to define a function f that calls a function g, but also
allow g to call f:

fun is_even x =

if x = 0

then true

else is_odd (x - 1)

fun is_odd x =

if x = 0

then false

else is_even (x - 1)

What could go wrong here?

At the time we’re defining is_even, is_odd is undefined

Mutual Recursion
Even or odd?

It may be desirable to define a function f that calls a function g, but also
allow g to call f:

fun is_even x =

if x = 0

then true

else is_odd (x - 1)

fun is_odd x =

if x = 0

then false

else is_even (x - 1)

What could go wrong here?
At the time we’re defining is_even, is_odd is undefined

Mutual Recursion
Even or odd?

Allow is_even to be higher order, so that we can pass is_odd to it:

fun is_even f x =

if x = 0

then true

else f (x - 1)

fun is_odd x =

if x = 0

then false

else is_even is_odd (x - 1)

Can we do better?

Mutual Recursion
Even or odd?

Allow is_even to be higher order, so that we can pass is_odd to it:

fun is_even f x =

if x = 0

then true

else f (x - 1)

fun is_odd x =

if x = 0

then false

else is_even is_odd (x - 1)

Can we do better?

Mutual Recursion
Even or odd?

ML allows for mutual recursion with the and keyword

fun is_even x =

if x = 0

then true

else is_odd (x - 1)

and is_odd x =

if x = 0

then false

else is_even (x - 1)

With and, we can also define a mutually recursive datatype too

Mutual Recursion
Even or odd?

ML allows for mutual recursion with the and keyword

fun is_even x =

if x = 0

then true

else is_odd (x - 1)

and is_odd x =

if x = 0

then false

else is_even (x - 1)

With and, we can also define a mutually recursive datatype too

Modules in ML
Abstraction

We saw modules in lecture:

signature MATHLIB =

sig

val fact : int -> int

val half_pi : real

val doubler : int -> int

end

structure MyMathLib :> MATHLIB =

struct

fun fact x = ...

val half_pi = Math.pi / 2.0

fun doubler x = x * 2

end

1. Good for organization and
managing namespaces

2. Helpful for maintaining
invariants

3. Especially helpful for hiding
implementation details

Invariants
Some Examples

1. Order of operations (e.g. insert query before searching)

2. Data kept in good shape (e.g. Rational from lecture only allows
reduced fractions

3. Following policy (e.g. don’t allow shipping requests without a
purchase order)

Currying
Lots of Examples

** Code will be available on the course website

	Mutual Recursion
	Modules in ML
	Currying

