
CSE341 – Section 3
Standard-Library Docs, First-Class Functions, & More

1. SML Docs
• Standard Basis

1. First-Class Functions
• Anonymous
• Style Points
• Higher-Order

1. Examples

Agenda

Standard Basis Documentation
Online Documentation
http://www.standardml.org/Basis/index.html
http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html

Helpful Subset
Top-Level http://www.standardml.org/Basis/top-level-chapter.html
List http://www.standardml.org/Basis/list.html
ListPair http://www.standardml.org/Basis/list-pair.html
Real http://www.standardml.org/Basis/real.html
String http://www.standardml.org/Basis/string.html

http://www.standardml.org/Basis/index.html
http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html
http://www.standardml.org/Basis/top-level-chapter.html
http://www.standardml.org/Basis/list.html
http://www.standardml.org/Basis/list-pair.html
http://www.standardml.org/Basis/real.html
http://www.standardml.org/Basis/string.html

Anonymous Functions
An Anonymous Function
fn pattern => expression
• An expression that creates a new function with no name.
• Usually used as an argument to a higher-order function.
• Almost equivalent to the following:
let fun name pattern = expression in name end
• The difference is that anonymous functions cannot be recursive!!!

Anonymous Functions
What's the difference between the following two bindings?

val name = fn pattern => expression;
fun name pattern = expression;

• Once again, the difference is recursion.
• However, excluding recursion, a fun binding could just be syntactic sugar for a

val binding and an anonymous function.

Unnecessary Function Wrapping
What's the difference between the following two expressions?

(fn xs => tl xs) è

STYLE POINTS!
• Other than style, these two expressions result in the exact same thing.
• However, one creates an unnecessary function to wrap tl.
• This is very similar to this style issue:
(if ex then true else false) è

Higher-Order Functions
A function that returns a function or takes a function as an argument.

• map : ('a -> 'b) * 'a list -> 'b list
– Applies a function to every element of a list and return a list of the resulting

values.
– Example: map (fn x => x*3, [1,2,3]) === [3,6,9]

• filter : ('a -> bool) * 'a list -> 'a list
– Returns the list of elements from the original list that, when a predicate

function is applied, result in true.
– Example: filter (fn x => x>2, [~5,3,2,5]) === [3,5]

• fold : (‘a * ‘b -> ‘a) * ‘a * ‘b list -> ‘a
– Initial accumulator: ‘a
– Returns f(…f(f(init, x1), x2)...xn) or init if the list is empty
– Example: fold (fn (x, y) => x + y, 0, [1,2,3,4]) === 10

Broader Idea
Functions are Awesome!
• SML functions can be passed around like any other value.
• They can be passed as function arguments, returned, and even stored in data

structures or variables.
• Functions like map are very pervasive in functional languages.

– A function like map can even be written for other data structures such as
trees.

(Let’s see some examples!)

Polymorphic Datatypes
(*Generic Binary Tree Type *)
datatype 'a tree = Empty

| Node of 'a * 'a tree * 'a tree

(* Apply a function to each element in a tree. *)
val treeMap = fn : ('a –> 'b) * 'a tree –> 'b tree

(* Returns true iff the given predicate returns
true when applied to each element in a tree. *)
val treeAll = fn : ('a –> bool) * 'a tree –> bool

