
CSE 341: Section 2
Tam Dang

University of Washington

October 4, 2018

Outline

Types and Datatypes

Type Generality

Equality

Syntactic Sugar

Pattern Matching

Types

• What does int * int * int mean?

• In HW1, we use it as a date type

• Can we make the semantics of this type more explicit?

type date = int * int * int

Types

• What does int * int * int mean?

• In HW1, we use it as a date type

• Can we make the semantics of this type more explicit?

type date = int * int * int

Types

• What does int * int * int mean?

• In HW1, we use it as a date type

• Can we make the semantics of this type more explicit?

type date = int * int * int

Types

• What does int * int * int mean?

• In HW1, we use it as a date type

• Can we make the semantics of this type more explicit?

type date = int * int * int

Types vs. DataTypes

A datatype introduces a new type distinct from all existing types

datatype suit = Club | Diamond | Heart | Spade

datatype rank = Jack | Queen | King | Ace

| Num of int

A type (aka type synonym) is just another name

type card = suit * rank

datatypes have constructors but type synonyms don’t!

Why use type synonyms?

• For now, just for convenience

• Later we will see another use for type synonyms in the modules unit

Types vs. DataTypes

A datatype introduces a new type distinct from all existing types

datatype suit = Club | Diamond | Heart | Spade

datatype rank = Jack | Queen | King | Ace

| Num of int

A type (aka type synonym) is just another name

type card = suit * rank

datatypes have constructors but type synonyms don’t!

Why use type synonyms?

• For now, just for convenience

• Later we will see another use for type synonyms in the modules unit

Types vs. DataTypes

A datatype introduces a new type distinct from all existing types

datatype suit = Club | Diamond | Heart | Spade

datatype rank = Jack | Queen | King | Ace

| Num of int

A type (aka type synonym) is just another name

type card = suit * rank

datatypes have constructors but type synonyms don’t!

Why use type synonyms?

• For now, just for convenience

• Later we will see another use for type synonyms in the modules unit

Types vs. DataTypes

A datatype introduces a new type distinct from all existing types

datatype suit = Club | Diamond | Heart | Spade

datatype rank = Jack | Queen | King | Ace

| Num of int

A type (aka type synonym) is just another name

type card = suit * rank

datatypes have constructors but type synonyms don’t!

Why use type synonyms?

• For now, just for convenience

• Later we will see another use for type synonyms in the modules unit

Type Generality

Write a function that appends two string lists

What happened?

We thought we needed

string list * string list -> string list

But the type checker found and used

’a list * ’a list -> ’a list

Why is this OK?

Type Generality

Write a function that appends two string lists

What happened?

We thought we needed

string list * string list -> string list

But the type checker found and used

’a list * ’a list -> ’a list

Why is this OK?

Type Generality

Write a function that appends two string lists

What happened?

We thought we needed

string list * string list -> string list

But the type checker found and used

’a list * ’a list -> ’a list

Why is this OK?

Type Generality
More General Types

The type

’a list * ’a list -> ’a list

is more general than the type

string list * string list -> string list

More general types can be used in place of less general types, for example

int list * int list -> int list

Is ’a list * ’a list -> ’a list more general than
int list * string list -> int list?

Type Generality
More General Types

The type

’a list * ’a list -> ’a list

is more general than the type

string list * string list -> string list

More general types can be used in place of less general types, for example

int list * int list -> int list

Is ’a list * ’a list -> ’a list more general than
int list * string list -> int list?

Type Generality
The ”Type Generality Rule”

A type t1 is more general than the type t2 if you can take t1, replace its
type variables consistently, and get t2

What does consistently mean?

Equality

Write a ”list contains” function

Equality Types

• The double quoted variable arises from use of the = operator

• We can use = on most types like int, bool, string, tuples (that
contain only “equality types”)

• Generality rules work the same, except substitution must be some
type which can be compared with =

• Functions and real are not ”equality types”

• You can ignore warnings about “calling polyEqual”

Equality

Write a ”list contains” function

Equality Types

• The double quoted variable arises from use of the = operator

• We can use = on most types like int, bool, string, tuples (that
contain only “equality types”)

• Generality rules work the same, except substitution must be some
type which can be compared with =

• Functions and real are not ”equality types”

• You can ignore warnings about “calling polyEqual”

Equality

Write a ”list contains” function

Equality Types

• The double quoted variable arises from use of the = operator

• We can use = on most types like int, bool, string, tuples (that
contain only “equality types”)

• Generality rules work the same, except substitution must be some
type which can be compared with =

• Functions and real are not ”equality types”

• You can ignore warnings about “calling polyEqual”

Syntactic Sugar
if-then-else

if-then-else is syntactic sugar for a case expression:

if x then "apple" else "banana"

can be written as

case x of true => "apple" | false => "banana"

Syntactic Sugar
if-then-else

if-then-else is syntactic sugar for a case expression:

if x then "apple" else "banana"

can be written as

case x of true => "apple" | false => "banana"

Syntactic Sugar
Logical Operators

andalso and orelse are also forms of syntactic sugar !

Given

val x = true

val y = false

Logical ”and” can be written as

val x_and_y = x andalso y

or this

val x_and_y = case x of true => y | false => false

Syntactic Sugar
Logical Operators

andalso and orelse are also forms of syntactic sugar !

Given

val x = true

val y = false

Logical ”and” can be written as

val x_and_y = x andalso y

or this

val x_and_y = case x of true => y | false => false

Adventures in pattern matching!

**SML code we write / look at together will be available on the course
website**

	Types and Datatypes
	Type Generality
	Equality
	Syntactic Sugar
	Pattern Matching

