
CSE341: Programming Languages

Lecture 8
Lexical Scope and Function Closures

Dan Grossman
Autumn 2018

Very important concept

• We know function bodies can use any bindings in scope

• But now that functions can be passed around: In scope where?

Where the function was defined
(not where it was called)

• This semantics is called lexical scope

• There are lots of good reasons for this semantics (why)
– Discussed after explaining what the semantics is (what)
– Later in course: implementing it (how)

• Must “get this” for homework, exams, and competent programming

Autumn 2018 2CSE341: Programming Languages

Example

Demonstrates lexical scope even without higher-order functions:

Autumn 2018 3CSE341: Programming Languages

(* 1 *) val x = 1
(* 2 *) fun f y = x + y
(* 3 *) val x = 2
(* 4 *) val y = 3
(* 5 *) val z = f (x + y)

• Line 2 defines a function that, when called, evaluates body x+y
in environment where x maps to 1 and y maps to the argument

• Call on line 5:
– Looks up f to get the function defined on line 2
– Evaluates x+y in current environment, producing 5
– Calls the function with 5, which evaluates the body in the old

environment, producing 6

Closures

How can functions be evaluated in old environments that aren’t around
anymore?

– The language implementation keeps them around as necessary

Can define the semantics of functions as follows:
• A function value has two parts

– The code (obviously)
– The environment that was current when the function was defined

• This is a “pair” but unlike ML pairs, you cannot access the pieces
• All you can do is call this “pair”
• This pair is called a function closure
• A call evaluates the code part in the environment part (extended

with the function argument)

Autumn 2018 4CSE341: Programming Languages

Example

Autumn 2018 5CSE341: Programming Languages

(* 1 *) val x = 1
(* 2 *) fun f y = x + y
(* 3 *) val x = 2
(* 4 *) val y = 3
(* 5 *) val z = f (x + y)

• Line 2 creates a closure and binds f to it:
– Code: “take y and have body x+y”
– Environment: “x maps to 1”

• (Plus whatever else is in scope, including f for recursion)

• Line 5 calls the closure defined in line 2 with 5
– So body evaluated in environment “x maps to 1” extended

with “y maps to 5”

Coming up:

Now you know the rule: lexical scope

Next steps:

• (Silly) examples to demonstrate how the rule works with higher-
order functions

• Why the other natural rule, dynamic scope, is a bad idea

• Powerful idioms with higher-order functions that use this rule
– Passing functions to iterators like filter
– Next lecture: Several more idioms

Autumn 2018 6CSE341: Programming Languages

The rule stays the same

A function body is evaluated in the environment where the function
was defined (created)

– Extended with the function argument

Nothing changes to this rule when we take and return functions
– But “the environment” may involve nested let-expressions,

not just the top-level sequence of bindings

Makes first-class functions much more powerful
– Even if may seem counterintuitive at first

Autumn 2018 7CSE341: Programming Languages

Example: Returning a function

• Trust the rule: Evaluating line 4 binds to g to a closure:
– Code: “take z and have body x+y+z”
– Environment: “y maps to 4, x maps to 5 (shadowing), …”
– So this closure will always add 9 to its argument

• So line 6 binds 15 to z

Autumn 2018 8CSE341: Programming Languages

(* 1 *) val x = 1
(* 2 *) fun f y =
(* 2a *) let val x = y+1
(* 2b *) in fn z => x+y+z end
(* 3 *) val x = 3
(* 4 *) val g = f 4
(* 5 *) val y = 5
(* 6 *) val z = g 6

Example: Passing a function

• Trust the rule: Evaluating line 3 binds h to a closure:
– Code: “take y and have body x+y”
– Environment: “x maps to 4, f maps to a closure, …”
– So this closure will always add 4 to its argument

• So line 4 binds 6 to z
– Line 1a is as stupid and irrelevant as it should be

Autumn 2018 9CSE341: Programming Languages

(* 1 *) fun f g = (* call arg with 2 *)
(* 1a *) let val x = 3
(* 1b *) in g 2 end
(* 2 *) val x = 4
(* 3 *) fun h y = x + y
(* 4 *) val z = f h

Why lexical scope

• Lexical scope: use environment where function is defined

• Dynamic scope: use environment where function is called

Decades ago, both might have been considered reasonable, but
now we know lexical scope makes much more sense

Here are three precise, technical reasons
– Not a matter of opinion

Autumn 2018 10CSE341: Programming Languages

Why lexical scope?
1. Function meaning does not depend on variable names used

Example: Can change body of f to use q everywhere instead of x
– Lexical scope: it cannot matter
– Dynamic scope: depends how result is used

Example: Can remove unused variables
– Dynamic scope: but maybe some g uses it (weird)

Autumn 2018 11CSE341: Programming Languages

fun f y =
let val x = y+1
in fn z => x+y+z end

fun f g =
let val x = 3
in g 2 end

Why lexical scope?

2. Functions can be type-checked and reasoned about where
defined

Example: Dynamic scope tries to add a string and an unbound
variable to 6

Autumn 2018 12CSE341: Programming Languages

val x = 1
fun f y =

let val x = y+1
in fn z => x+y+z end

val x = "hi"
val g = f 7
val z = g 4

Why lexical scope?

3. Closures can easily store the data they need
– Many more examples and idioms to come

Autumn 2018 13CSE341: Programming Languages

fun greaterThanX x = fn y => y > x

fun filter (f,xs) =
case xs of

[] => []
| x::xs => if f x

then x::(filter(f,xs))
else filter(f,xs)

fun noNegatives xs = filter(greaterThanX ~1, xs)
fun allGreater (xs,n) = filter(fn x => x > n, xs)

Does dynamic scope exist?

• Lexical scope for variables is definitely the right default
– Very common across languages

• Dynamic scope is occasionally convenient in some situations
– So some languages (e.g., Racket) have special ways to do it
– But most do not bother

• If you squint some, exception handling is more like dynamic scope:
– raise e transfers control to the current innermost handler
– Does not have to be syntactically inside a handle expression

(and usually is not)

Autumn 2018 14CSE341: Programming Languages

When things evaluate

Things we know:
– A function body is not evaluated until the function is called
– A function body is evaluated every time the function is called
– A variable binding evaluates its expression when the binding

is evaluated, not every time the variable is used

With closures, this means we can avoid repeating computations
that do not depend on function arguments

– Not so worried about performance, but good example to
emphasize the semantics of functions

Autumn 2018 15CSE341: Programming Languages

Recomputation

These both work and rely on using variables in the environment

The first one computes String.size once per element of xs
The second one computes String.size s once per list

– Nothing new here: let-bindings are evaluated when
encountered and function bodies evaluated when called

Autumn 2018 16CSE341: Programming Languages

fun allShorterThan1 (xs,s) =
filter(fn x => String.size x < String.size s,

xs)

fun allShorterThan2 (xs,s) =
let val i = String.size s
in filter(fn x => String.size x < i, xs) end

Another famous function: Fold
fold (and synonyms / close relatives reduce, inject, etc.) is
another very famous iterator over recursive structures

Accumulates an answer by repeatedly applying f to answer so far
– fold(f,acc,[x1,x2,x3,x4]) computes
f(f(f(f(acc,x1),x2),x3),x4)

Autumn 2018 17CSE341: Programming Languages

fun fold (f,acc,xs) =
case xs of

[] => acc
| x::xs => fold(f, f(acc,x), xs)

val fold = fn : ('a * 'b -> 'a) * 'a * 'b list -> 'a

– This version “folds left”; another version “folds right”
– Whether the direction matters depends on f (often not)

Why iterators again?

• These “iterator-like” functions are not built into the language
– Just a programming pattern
– Though many languages have built-in support, which often

allows stopping early without resorting to exceptions

• This pattern separates recursive traversal from data processing
– Can reuse same traversal for different data processing
– Can reuse same data processing for different data structures
– In both cases, using common vocabulary concisely

communicates intent

Autumn 2018 18CSE341: Programming Languages

Examples with fold
These are useful and do not use “private data”

Autumn 2018 19CSE341: Programming Languages

These are useful and do use “private data”

fun f1 xs = fold((fn (x,y) => x+y), 0, xs)
fun f2 xs = fold((fn (x,y) => x andalso y>=0),

true, xs)

fun f3 (xs,hi,lo) =
fold(fn (x,y) =>

x + (if y >= lo andalso y <= hi
then 1
else 0)),

0, xs)
fun f4 (g,xs) = fold(fn (x,y) => x andalso g y),

true, xs)

Iterators made better

• Functions like map, filter, and fold are much more powerful
thanks to closures and lexical scope

• Function passed in can use any “private” data in its environment

• Iterator “doesn’t even know the data is there” or what type it has

Autumn 2018 20CSE341: Programming Languages

	CSE341: Programming Languages��Lecture 8�Lexical Scope and Function Closures
	Very important concept
	Example
	Closures
	Example
	Coming up:
	The rule stays the same
	Example: Returning a function
	Example: Passing a function
	Why lexical scope
	Why lexical scope?
	Why lexical scope?
	Why lexical scope?
	Does dynamic scope exist?
	When things evaluate
	Recomputation
	Another famous function: Fold
	Why iterators again?
	Examples with fold
	Iterators made better

