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Now…

Use what we learned about subtyping for records and functions to 
understand subtyping for class-based OOP

– Like in Java/C#

Recall:
– Class names are also types
– Subclasses are also subtypes
– Substitution principle: Instance of subclass should usable in 

place of instance of superclass
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An object is…

• Objects: mostly records holding fields and methods
– Fields are mutable
– Methods are immutable functions that also have access to 
self

• So could design a type system using types very much like 
record types
– Subtypes could have extra fields and methods
– Overriding methods could have contravariant arguments and 

covariant results compared to method overridden
• Sound only because method “slots” are immutable!
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Actual Java/C#…

Compare/contrast to what our “theory” allows:

1. Types are class names and subtyping are explicit subclasses

2. A subclass can add fields and methods

3. A subclass can override a method with a covariant return type
– (No contravariant arguments; instead makes it a non-

overriding method of the same name)

(1) Is a subset of what is sound (so also sound)

(3)  Is a subset of what is sound and a different choice (adding 
method instead of overriding)
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Classes vs. Types

• A class defines an object's behavior
– Subclassing inherits behavior and changes it via extension and 

overriding

• A type describes an object's methods’ argument/result types
– A subtype is substitutable in terms of its field/method types

• These are separate concepts:  try to use the terms correctly
– Java/C# confuse them by requiring subclasses to be subtypes
– A class name is both a class and a type
– Confusion is convenient in practice
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Optional: More details

Java and C# are sound: They do not allow subtypes to do things 
that would lead to “method missing” or accessing a field at the 
wrong type

Confusing (?) Java example:
– Subclass can declare field name already declared by 

superclass
– Two classes can use any two types for the field name
– Instances of subclass have two fields with same name
– “Which field is in scope” depends on which class defined the 

method
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self/this is special
• Recall our Racket encoding of OOP-style

– “Objects” have a list of fields and a list of functions that take 
self as an explicit extra argument

• So if self/this is a function argument, is it contravariant?
– No, it is covariant: a method in a subclass can use fields and 

methods only available in the subclass: essential for OOP

– Sound because calls always use the “whole object” for self
– This is why coding up your own objects manually works 

much less well in a statically typed languages
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class A {
int m(){ return 0; }

}
class B extends A {
int x;
int m(){ return x; }

}



What are generics good for?

Some good uses for parametric polymorphism:
• Types for functions that combine other functions:

• Types for functions that operate over generic collections

• Many other idioms

• General point: When types can “be anything” but multiple things 
need to be “the same type”
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fun compose (g,h) = fn x => g (h x)
(* compose : ('b -> 'c) * ('a -> 'b) -> ('a -> 'c) *)

val length : 'a list -> int
val map : ('a -> 'b) -> 'a list -> 'b list
val swap : ('a * 'b) -> ('b * 'a)



Generics in Java

• Java generics a bit clumsier syntactically and semantically, but 
can express the same ideas
– Without closures, often need to use (one-method) objects
– See also earlier optional lecture on closures in Java/C

• Simple example without higher-order functions (optional):
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class Pair<T1,T2> {
T1 x;
T2 y;
Pair(T1 _x, T2 _y){ x = _x; y = _y; }
Pair<T2,T1> swap() { 

return new Pair<T2,T1>(y,x);
}
…

}



Subtyping is not good for this

• Using subtyping for containers is much more painful for clients 
– Have to downcast items retrieved from containers
– Downcasting has run-time cost
– Downcasting can fail: no static check that container holds 

the type of data you expect
– (Only gets more painful with higher-order functions like map)
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class LamePair {
Object x;
Object y;
LamePair(Object _x, Object _y){ x=_x; y=_y; }
LamePair swap() { return new LamePair(y,x); }

}

// error caught only at run-time:
String s = (String)(new LamePair("hi",4).y);



What is subtyping good for?

Some good uses for subtype polymorphism:

• Code that “needs a Foo” but fine to have “more than a Foo”

• Geometry on points works fine for colored points

• GUI widgets specialize the basic idea of “being on the screen” 
and “responding to user actions”
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Awkward in ML

ML does not have subtyping, so this simply does not type-check:

Cumbersome workaround: have caller pass in getter functions:

– And clients still need different getters for points, color-points
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(* {x:real, y:real} -> real *)
fun distToOrigin ({x=x,y=y}) =

Math.sqrt(x*x + y*y)

val five = distToOrigin {x=3.0,y=4.0,color="red"}

(* ('a -> real) * ('a -> real) * 'a -> real *)
fun distToOrigin (getx, gety, v) =

Math.sqrt((getx v)*(getx v) 
+ (gety v)*(gety v))



Wanting both

• Could a language have generics and subtyping?
– Sure!

• More interestingly, want to combine them
– “Any type T1 that is a subtype of T2”
– Called bounded polymorphism
– Lets you do things naturally you cannot do with generics or 

subtyping separately
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Example

Method that takes a list of points and a circle (center point, radius)
– Return new list of points in argument list that lie within circle

Basic method signature:

Java implementation straightforward assuming Point has a 
distance method:
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List<Point> inCircle(List<Point> pts, 
Point center, 
double r) { … }

List<Point> result = new ArrayList<Point>();
for(Point pt : pts)
if(pt.distance(center) < r)
result.add(pt);

return result;



Subtyping?

• Would like to use inCircle by passing a List<ColorPoint>
and getting back a List<ColorPoint>

• Java rightly disallows this: While inCircle would “do nothing 
wrong” its type does not prevent:
– Returning a list that has a non-color-point in it
– Modifying pts by adding non-color-points to it
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List<Point> inCircle(List<Point> pts, 
Point center, 
double r) { … }



Generics?

• We could change the method to be

– Now the type system allows passing in a List<Point> to 
get a List<Point> returned or a List<ColorPoint> to 
get a List<ColorPoint> returned

– But cannot implement inCircle properly: method body 
should have no knowledge of type T
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List<Point> inCircle(List<Point> pts, 
Point center, 
double r) { … }

<T> List<T> inCircle(List<T> pts, 
Point center, 
double r) { … }



Bounds

• What we want:

• Caller uses it generically, but must instantiate T with some 
subtype of Point (including Point)

• Callee can assume T <: Point so it can do its job
• Callee must return a List<T> so output will contain only  

elements from pts
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<T> List<T> inCircle(List<T> pts, 
Point center, 
double r) where T <: Point

{ … }



Real Java

• The actual Java syntax:

• Note: For backward-compatibility and implementation reasons, 
in Java there is actually always a way to use casts to get around 
the static checking with generics 
– With or without bounded polymorphism
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<T extends Pt> List<T> inCircle(List<T> pts, 
Pt center, 
double r) {

List<T> result = new ArrayList<T>();
for(T pt : pts)
if(pt.distance(center) < r)
result.add(pt);

return result;
}
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