
CSE341: Programming Languages

Lecture 25
Subtyping for OOP;

Comparing/Combining Generics and
Subtyping

Dan Grossman
Autumn 2018

Now…

Use what we learned about subtyping for records and functions to
understand subtyping for class-based OOP

– Like in Java/C#

Recall:
– Class names are also types
– Subclasses are also subtypes
– Substitution principle: Instance of subclass should usable in

place of instance of superclass

Autumn 2018 2CSE341: Programming Languages

An object is…

• Objects: mostly records holding fields and methods
– Fields are mutable
– Methods are immutable functions that also have access to
self

• So could design a type system using types very much like
record types
– Subtypes could have extra fields and methods
– Overriding methods could have contravariant arguments and

covariant results compared to method overridden
• Sound only because method “slots” are immutable!

Autumn 2018 3CSE341: Programming Languages

Actual Java/C#…

Compare/contrast to what our “theory” allows:

1. Types are class names and subtyping are explicit subclasses

2. A subclass can add fields and methods

3. A subclass can override a method with a covariant return type
– (No contravariant arguments; instead makes it a non-

overriding method of the same name)

(1) Is a subset of what is sound (so also sound)

(3) Is a subset of what is sound and a different choice (adding
method instead of overriding)

Autumn 2018 4CSE341: Programming Languages

Classes vs. Types

• A class defines an object's behavior
– Subclassing inherits behavior and changes it via extension and

overriding

• A type describes an object's methods’ argument/result types
– A subtype is substitutable in terms of its field/method types

• These are separate concepts: try to use the terms correctly
– Java/C# confuse them by requiring subclasses to be subtypes
– A class name is both a class and a type
– Confusion is convenient in practice

Autumn 2018 5CSE341: Programming Languages

Optional: More details

Java and C# are sound: They do not allow subtypes to do things
that would lead to “method missing” or accessing a field at the
wrong type

Confusing (?) Java example:
– Subclass can declare field name already declared by

superclass
– Two classes can use any two types for the field name
– Instances of subclass have two fields with same name
– “Which field is in scope” depends on which class defined the

method

Autumn 2018 6CSE341: Programming Languages

self/this is special
• Recall our Racket encoding of OOP-style

– “Objects” have a list of fields and a list of functions that take
self as an explicit extra argument

• So if self/this is a function argument, is it contravariant?
– No, it is covariant: a method in a subclass can use fields and

methods only available in the subclass: essential for OOP

– Sound because calls always use the “whole object” for self
– This is why coding up your own objects manually works

much less well in a statically typed languages
Autumn 2018 7CSE341: Programming Languages

class A {
int m(){ return 0; }

}
class B extends A {
int x;
int m(){ return x; }

}

What are generics good for?

Some good uses for parametric polymorphism:
• Types for functions that combine other functions:

• Types for functions that operate over generic collections

• Many other idioms

• General point: When types can “be anything” but multiple things
need to be “the same type”

Autumn 2018 8CSE341: Programming Languages

fun compose (g,h) = fn x => g (h x)
(* compose : ('b -> 'c) * ('a -> 'b) -> ('a -> 'c) *)

val length : 'a list -> int
val map : ('a -> 'b) -> 'a list -> 'b list
val swap : ('a * 'b) -> ('b * 'a)

Generics in Java

• Java generics a bit clumsier syntactically and semantically, but
can express the same ideas
– Without closures, often need to use (one-method) objects
– See also earlier optional lecture on closures in Java/C

• Simple example without higher-order functions (optional):

Autumn 2018 9CSE341: Programming Languages

class Pair<T1,T2> {
T1 x;
T2 y;
Pair(T1 _x, T2 _y){ x = _x; y = _y; }
Pair<T2,T1> swap() {

return new Pair<T2,T1>(y,x);
}
…

}

Subtyping is not good for this

• Using subtyping for containers is much more painful for clients
– Have to downcast items retrieved from containers
– Downcasting has run-time cost
– Downcasting can fail: no static check that container holds

the type of data you expect
– (Only gets more painful with higher-order functions like map)

Autumn 2018 10CSE341: Programming Languages

class LamePair {
Object x;
Object y;
LamePair(Object _x, Object _y){ x=_x; y=_y; }
LamePair swap() { return new LamePair(y,x); }

}

// error caught only at run-time:
String s = (String)(new LamePair("hi",4).y);

What is subtyping good for?

Some good uses for subtype polymorphism:

• Code that “needs a Foo” but fine to have “more than a Foo”

• Geometry on points works fine for colored points

• GUI widgets specialize the basic idea of “being on the screen”
and “responding to user actions”

Autumn 2018 11CSE341: Programming Languages

Awkward in ML

ML does not have subtyping, so this simply does not type-check:

Cumbersome workaround: have caller pass in getter functions:

– And clients still need different getters for points, color-points

Autumn 2018 12CSE341: Programming Languages

(* {x:real, y:real} -> real *)
fun distToOrigin ({x=x,y=y}) =

Math.sqrt(x*x + y*y)

val five = distToOrigin {x=3.0,y=4.0,color="red"}

(* ('a -> real) * ('a -> real) * 'a -> real *)
fun distToOrigin (getx, gety, v) =

Math.sqrt((getx v)*(getx v)
+ (gety v)*(gety v))

Wanting both

• Could a language have generics and subtyping?
– Sure!

• More interestingly, want to combine them
– “Any type T1 that is a subtype of T2”
– Called bounded polymorphism
– Lets you do things naturally you cannot do with generics or

subtyping separately

Autumn 2018 13CSE341: Programming Languages

Example

Method that takes a list of points and a circle (center point, radius)
– Return new list of points in argument list that lie within circle

Basic method signature:

Java implementation straightforward assuming Point has a
distance method:

Autumn 2018 14CSE341: Programming Languages

List<Point> inCircle(List<Point> pts,
Point center,
double r) { … }

List<Point> result = new ArrayList<Point>();
for(Point pt : pts)
if(pt.distance(center) < r)
result.add(pt);

return result;

Subtyping?

• Would like to use inCircle by passing a List<ColorPoint>
and getting back a List<ColorPoint>

• Java rightly disallows this: While inCircle would “do nothing
wrong” its type does not prevent:
– Returning a list that has a non-color-point in it
– Modifying pts by adding non-color-points to it

Autumn 2018 15CSE341: Programming Languages

List<Point> inCircle(List<Point> pts,
Point center,
double r) { … }

Generics?

• We could change the method to be

– Now the type system allows passing in a List<Point> to
get a List<Point> returned or a List<ColorPoint> to
get a List<ColorPoint> returned

– But cannot implement inCircle properly: method body
should have no knowledge of type T

Autumn 2018 16CSE341: Programming Languages

List<Point> inCircle(List<Point> pts,
Point center,
double r) { … }

<T> List<T> inCircle(List<T> pts,
Point center,
double r) { … }

Bounds

• What we want:

• Caller uses it generically, but must instantiate T with some
subtype of Point (including Point)

• Callee can assume T <: Point so it can do its job
• Callee must return a List<T> so output will contain only

elements from pts

Autumn 2018 17CSE341: Programming Languages

<T> List<T> inCircle(List<T> pts,
Point center,
double r) where T <: Point

{ … }

Real Java

• The actual Java syntax:

• Note: For backward-compatibility and implementation reasons,
in Java there is actually always a way to use casts to get around
the static checking with generics
– With or without bounded polymorphism

Autumn 2018 18CSE341: Programming Languages

<T extends Pt> List<T> inCircle(List<T> pts,
Pt center,
double r) {

List<T> result = new ArrayList<T>();
for(T pt : pts)
if(pt.distance(center) < r)
result.add(pt);

return result;
}

	CSE341: Programming Languages��Lecture 25�Subtyping for OOP;�Comparing/Combining Generics and Subtyping
	Now…
	An object is…
	Actual Java/C#…
	Classes vs. Types
	Optional: More details
	self/this is special
	What are generics good for?
	Generics in Java
	Subtyping is not good for this
	What is subtyping good for?
	Awkward in ML
	Wanting both
	Example
	Subtyping?
	Generics?
	Bounds
	Real Java

