PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

CSE341: Programming Languages

Lecture 20
Arrays and Such,
Blocks and Procs,
Inheritance and Overriding

Dan Grossman
Autumn 2018

This lecture

Three mostly separate topics
» Flexible arrays, ranges, and hashes [actually covered in section]

* Ruby’s approach to almost-closures (blocks) and closures (Procs)
— [partially discussed in section as well]
— Convenient to use; unusual approach
— Used throughout large standard library
 Explicit loops rare
+ Instead of a loop, go find a useful iterator

« Subclasses, inheritance, and overriding
— The essence of OOP, now in a more dynamic language

Autumn 2018 CSE341: Programming Languages 2

Ruby Arrays

» Lots of special syntax and many provided methods for the
Array class

» Can hold any number of other objects, indexed by number
— Getviaa[i]
— Setviaa[i] = e

» Compared to arrays in many other languages
— More flexible and dynamic

Using Arrays

+ See many examples, some demonstrated here

» Consult the documentation/tutorials
— If seems sensible and general, probably a method for it

» Arrays make good tuples, lists, stacks, queues, sets, ...

« lterating over arrays typically done with methods taking blocks

. — Next topic...
— Fewer operations are errors
— Less efficient
* “The standard collection” (like lists were in ML and Racket)
Autumn 2018 CSE341: Programming Languages 3 Autumn 2018 CSE341: Programming Languages 4
Blocks Some strange things

Blocks are probably Ruby's strangest feature compared to other PLs

But almost just closures

— Normal: easy way to pass anonymous functions to methods for
all the usual reasons

— Normal: Blocks can take 0 or more arguments

— Normal: Blocks use lexical scope: block body uses
environment where block was defined

Examples:
3.times { puts "hi" }
[4,6,8]-each { puts "hi" }
i=7
[4,6,8]-each {|x] if i > x then puts (x+1) end }

Autumn 2018 CSE341: Programming Languages 5

+ Can pass 0 or 1 block with any message
— Callee might ignore it
— Callee might give an error if you do not send one
— Callee might do different things if you do/don’t send one
+ Also number-of-block-arguments can matter

» Just put the block “next to” the “other” arguments (if any)
— Syntax: {e}, {Ix] e}, {Ix.yl| e}, etc. (plus variations)
+ Can also replace { and } with do and end
— Often preferred for blocks > 1 line

Autumn 2018 CSE341: Programming Languages 6

Blocks everywhere

* Rampant use of great block-taking methods in standard libraray
* Ruby has loops but very rarely used

— Canwrite (0..1).each {]J| e}, butoften better options
+ Examples (consult documentation for many more)

a = Array.new(5) {]i] 4*Ci+1)}

a.each { puts "hi" }

a.each {|x] puts (x * 2) }

a.map {Ix] x * 2 } #synonym: collect
a.any? {|x] x> 7 }

a.all? {|x] x> 7 }

a.inject(0) {Jlacc,elt] acctelt }

a.select {|x] x > 7 } #non-synonym: filter

Autumn 2018 CSE341: Programming Languages 7

More strangeness

» Callee does not give a name to the (potential) block argument

» Instead, just calls it with yield or yield(args)
— Silly example:

def silly a x.silly 5 { |b] b*2 }
(yield a) + (yield 42)
end

— See code for slightly less silly example

+ Can ask block_given? but often just assume a block is given
or that a block's presence is implied by other arguments

Autumn 2018 CSE341: Programming Languages 8

Blocks are “second-class”

All a method can do with a block is yield to it
— Cannot return it, store it in an object (e.g., for a callback), ...
— But can also turn blocks into real closures
— Closures are instances of class Proc
+ Called with method call

This is Ruby, so there are several ways to make Proc objects ©

— One way: method lambda of Object takes a block and
returns the corresponding Proc

Autumn 2018 CSE341: Programming Languages 9

Example
a = [3,5,7,9]

» Blocks are fine for applying to array elements

b
i

a.map {|x] x+1 }
b.count {|x] x>=6 }

+ But for an array of closures, need Proc objects
— More common use is callbacks

c = a.map {Ix|] lambda {]y| x>=y}}
c[2]-call 17
J = c.count {|x] x.call(5) }

Autumn 2018 CSE341: Programming Languages 10

Moral

+ First-class (“can be passed/stored anywhere”) makes closures
more powerful than blocks

* But blocks are (a little) more convenient and cover most uses
+ This helps us understand what first-class means

» Language design question: When is convenience worth making
something less general and powerful?

Autumn 2018 CSE341: Programming Languages 11

More collections

» Hashes like arrays but:
— Keys can be anything; strings and symbols common
— No natural ordering like numeric indices
— Different syntax to make them
Like a dynamic record with anything for field names
— Often pass a hash rather than many arguments

» Ranges like arrays of contiguous numbers but:
— More efficiently represented, so large ranges fine

Good style to:
— Use ranges when you can
— Use hashes when non-numeric keys better represent data

Autumn 2018 CSE341: Programming Languages 12

Similar methods

» Arrays, hashes, and ranges all have some methods other don’t
- E.g., keys and values

+ But also have many of the same methods, particularly iterators
— Great for duck typing

— Example
def foo a
a.count {|x] x*x < 50}
end

foo [3,5,7,9]
foo (3..9)

Once again separating “how to iterate” from “what to do”

Autumn 2018 CSE341: Programming Languages 13

Next major topic

« Subclasses, inheritance, and overriding
— The essence of OOP

— Not unlike you have seen in Java, but worth studying from PL
perspective and in a more dynamic language

Autumn 2018 CSE341: Programming Languages 14

Subclassing

* A class definition has a superclass (Object if not specified)

class ColorPoint < Point

* The superclass affects the class definition:
— Class inherits all method definitions from superclass
— But class can override method definitions as desired

* Unlike Java/C#/C++:

— No such thing as “inheriting fields” since all objects create
instance variables by assigning to them

— Subclassing has nothing to do with a (non-existent) type
system: can still (try to) call any method on any object

Autumn 2018 CSE341: Programming Languages 15

Example (to be continued)

class Point class ColorPoint < Point
attr_accessor X, Iy attr_accessor :color
def initialize(Xx,y) def initialize(x,y,c)
@x = x super(X,y)
@y =y @color = c
end end
def distFromOrigin end

direct field access
Math.sqrt(@x*@x
+ @y*@y)
end
def distFromOrigin2
use getters
Math.sqrt(x*x

+ YY)
end
end
Autumn 2018 CSE341: Programming Languages 16

An object has a class

p = Point.new(0,0)
cp = ColorPoint.new(0,0,"red™)

p-class # Point
p.class.superclass # Object
cp.class # ColorPoint
cp.class.superclass # Point
cp.class.superclass.superclass # Object
cp.is_a? Point # true
cp.instance_of? Point # false
cp.is_a? ColorPoint # true

cp. instance_of? ColorPoint # true

» Using these methods is usually non-OOP style
— Disallows other things that “act like a duck”

— Nonetheless semantics is that an instance of ColorPoint
“is @” Point but is not an “instance of’ Point

— [Java note: instanceof is like Ruby's is_a?]
Autumn 2018 CSE341: Programming Languages 17

Example continued

« Consider alternatives to:

class ColorPoint < Point
attr_accessor :color
def initialize(X,y,c)

super(x,y)
@color = c
end

end

» Here subclassing is a good choice, but programmers often
overuse subclassing in OOP languages

Autumn 2018 CSE341: Programming Languages 18

Why subclass

« Instead of creating ColorPoint, could add methods to Point
— That could mess up other users and subclassers of Point

class Point
attr_accessor :color
def initialize(Xx,y,c="clear™)

Why subclass

« Instead of subclassing Point, could copy/paste the methods

— Means the same thing if you don't use methods like is_a?
and superclass, but of course code reuse is nice

class ColorPoint
attr_accessor :x, :y, :-color
def initialize(x,y,c="clear™)

@x = x
@y =y end
@color = c def distFromOrigin
end Math.sqrt(@x*@x + @y*@y)
end end
def distFromOrigin2
Math.sqrt(x*x + y*y)
end
end
Autumn 2018 CSE341: Programming Languages 19 Autumn 2018 CSE341: Programming Languages 20
Why subclass Overriding

+ Instead of subclassing Point, could use a Point instance variable
— Define methods to send same message to the Point
— Often OOP programmers overuse subclassing

— But for ColorPoint, subclassing makes sense: less work and
can use a ColorPoint wherever code expects a Point

class ColorPoint
attr_accessor :color
def initialize(x,y,c="clear™)
@pt = Point.new(X,y)
@color = c
end
def x
@pt.x
end
.. # similar “forwarding” methods
for y, x=, y=
end
Autumn 2018 CSE341: Programming Languages 21

= ThreeDPoint is more interesting than ColorPoint because it
overrides distFromOrigin and distFromOrigin2

— Gets code reuse, but highly disputable if it is appropriate to
say a ThreeDPoint “isa” Point

— Still just avoiding copy/paste
class ThreeDPoint < Point

aef initialize(x,y,z)

super(x,y)
@z = z

end

def distFromOrigin # distFromOrigin2 similar
d = super
Math.sqrt(d*d + @z*@z)

end

end
Autumn 2018 CSE341: Programming Languages 22

So far...

« With examples so far, objects are not so different from closures
Multiple methods rather than just “call me”

Explicit instance variables rather than environment where
function is defined

Inheritance avoids helper functions or code copying
— “Simple” overriding just replaces methods

» But there is one big difference:

Overriding can make a method defined in the superclass
call a method in the subclass

— The essential difference of OOP, studied carefully next lecture

Autumn 2018 CSE341: Programming Languages 23

Example: Equivalent except constructor

class PolarPoint < Point » Also need to define x=and y=
def initialize(r,theta) (see code file)
@r = r
@theta = theta .

i . Kgy punchllne_: i .
AT Q|stFrorrlpr|g|n2,def|’r1ed
@r * Math.cos(@theta) in Point, “already works'
end def distFromOrigin2
def y Math_sqrt(x*x+y*y)

@r * Math.sin(@theta) end
end
def distFromOrigin — Why: calls to sel T are
ar resolved in terms of the
end object's class

end

Autumn 2018 CSE341: Programming Languages 24

