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Delayed evaluation

For each language construct, the semantics specifies when 
subexpressions get evaluated.  In ML, Racket, Java, C:

– Function arguments are eager (call-by-value)
• Evaluated once before calling the function

– Conditional branches are not eager

It matters: calling factorial-bad never terminates:
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(define (my-if-bad x y z) 
(if x y z))

(define (factorial-bad n) 
(my-if-bad (= n 0)

1
(* n (factorial-bad (- n 1)))))



Thunks delay

We know how to delay evaluation: put expression in a function!
– Thanks to closures, can use all the same variables later

A zero-argument function used to delay evaluation is called a thunk
– As a verb: thunk the expression

This works (but it is silly to wrap if like this):
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(define (my-if x y z) 
(if x (y) (z)))

(define (fact n) 
(my-if (= n 0)

(lambda() 1)
(lambda() (* n (fact (- n 1))))))



The key point

• Evaluate an expression e to get a result:

• A function that when called, evaluates e and returns result
– Zero-argument function for “thunking”

• Evaluate e to some thunk and then call the thunk

• Next: Powerful idioms related to delaying evaluation and/or 
avoided repeated or unnecessary computations
– Some idioms also use mutation in encapsulated ways
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e

(lambda () e)

(e)



Avoiding expensive computations
Thunks let you skip expensive computations if they are not needed

Great if take the true-branch:

But worse if you end up using the thunk more than once:

In general, might not know many times a result is needed
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(define (f th) 
(if (…) 0 (…  (th) …)))

(define (f th) 
(… (if (…) 0 (… (th) …))

(if (…) 0 (… (th) …))
…
(if (…) 0 (… (th) …))))



Best of both worlds

Assuming some expensive computation has no side effects, ideally 
we would:

– Not compute it until needed
– Remember the answer so future uses complete immediately

Called lazy evaluation

Languages where most constructs, including function arguments, 
work this way are lazy languages

– Haskell

Racket predefines support for promises, but we can make our own
– Thunks and mutable pairs are enough
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Delay and force
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(define (my-delay th)
(mcons #f th))

(define (my-force p)
(if (mcar p)

(mcdr p)
(begin (set-mcar! p #t)

(set-mcdr! p ((mcdr p)))
(mcdr p))))

An ADT represented by a mutable pair
• #f in car means cdr is unevaluated thunk

– Really a one-of type: thunk or result-of-thunk
• Ideally hide representation in a module



Using promises
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(define (f p) 
(… (if (…) 0 (… (my-force p) …))

(if (…) 0 (… (my-force p) …))
…
(if (…) 0 (… (my-force p) …))))

(f (my-delay (lambda () e)))



Lessons From Example

See code file for example that does multiplication using a very slow 
addition helper function

• With thunking second argument: 
– Great if first argument 0
– Okay if first argument 1
– Worse otherwise

• With precomputing second argument: 
– Okay in all cases

• With thunk that uses a promise for second argument: 
– Great if first argument 0
– Okay otherwise
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Streams

• A stream is an infinite sequence of values
– So cannot make a stream by making all the values
– Key idea: Use a thunk to delay creating most of the sequence
– Just a programming idiom

A powerful concept for division of labor:
– Stream producer knows how to create any number of values
– Stream consumer decides how many values to ask for

Some examples of streams you might (not) be familiar with:
– User actions (mouse clicks, etc.)
– UNIX pipes: cmd1 | cmd2 has cmd2 “pull” data from cmd1
– Output values from a sequential feedback circuit
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Using streams

We will represent streams using pairs and thunks

Let a stream be a thunk that when called returns a pair:
'(next-answer . next-thunk)

So given a stream s, the client can get any number of elements
– First: (car (s))
– Second: (car ((cdr (s))))
– Third:     (car ((cdr ((cdr (s))))))
(Usually bind (cdr (s)) to a variable or pass to a recursive 
function)
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Example using streams

This function returns how many stream elements it takes to find 
one for which tester does not return #f

– Happens to be written with a tail-recursive helper function

– (stream) generates the pair
– So recursively pass (cdr pr), the thunk for the rest of the 

infinite sequence
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(define (number-until stream tester) 
(letrec ([f (lambda (stream ans) 

(let ([pr (stream)])
(if (tester (car pr))

ans
(f (cdr pr) (+ ans 1)))))])

(f stream 1)))



Streams

Coding up a stream in your program is easy 
– We will do functional streams using pairs and thunks

Let a stream be a thunk that when called returns a pair:
'(next-answer . next-thunk)

Saw how to use them, now how to make them…
– Admittedly mind-bending, but uses what we know
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Making streams
• How can one thunk create the right next thunk?  Recursion!

– Make a thunk that produces a pair where cdr is next thunk
– A recursive function can return a thunk where recursive call 

does not happen until thunk is called
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(define ones (lambda () (cons 1 ones)))

(define nats
(letrec ([f (lambda (x) 

(cons x (lambda () (f (+ x 1)))))])
(lambda () (f 1))))

(define powers-of-two
(letrec ([f (lambda (x) 

(cons x (lambda () (f (* x 2)))))])
(lambda () (f 2))))



Getting it wrong
• This uses a variable before it is defined

• This goes into an infinite loop making an infinite-length list

• This is a stream: thunk that returns a pair with cdr a thunk
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(define ones (lambda () (cons 1 ones)))
(define (ones) (cons 1 ones))

(define ones-really-bad (cons 1 ones-really-bad))

(define ones-bad (lambda () cons 1 (ones-bad)))
(define (ones-bad) (cons 1 (ones-bad)))



Memoization

• If a function has no side effects and does not read mutable 
memory, no point in computing it twice for the same arguments
– Can keep a cache of previous results
– Net win if (1) maintaining cache is cheaper than recomputing

and (2) cached results are reused

• Similar to promises, but if the function takes arguments, then 
there are multiple “previous results”

• For recursive functions, this memoization can lead to 
exponentially faster programs
– Related to algorithmic technique of dynamic programming
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How to do memoization: see example

• Need a (mutable) cache that all calls using the cache share
– So must be defined outside the function(s) using it

• See code for an example with Fibonacci numbers

– Good demonstration of the idea because it is short, but, as 
shown in the code, there are also easier less-general ways 
to make fibonacci efficient

– (An association list (list of pairs) is a simple but sub-optimal 
data structure for a cache; okay for our example)
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assoc

• Example uses assoc, which is just a library function you could 
look up in the Racket reference manual:

(assoc v lst) takes a list of pairs and locates the first 
element of lst whose car is equal to v according to is-
equal?. If such an element exists, the pair (i.e., an element of 
lst) is returned. Otherwise, the result is #f.

• Returns #f for not found to distinguish from finding a pair with 
#f in cdr
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