
CSE341: Programming Languages

Lecture 14
Thunks, Laziness, Streams, Memoization

Dan Grossman
Autumn 2018

Delayed evaluation

For each language construct, the semantics specifies when
subexpressions get evaluated. In ML, Racket, Java, C:

– Function arguments are eager (call-by-value)
• Evaluated once before calling the function

– Conditional branches are not eager

It matters: calling factorial-bad never terminates:

Autumn 2018 2CSE341: Programming Languages

(define (my-if-bad x y z)
(if x y z))

(define (factorial-bad n)
(my-if-bad (= n 0)

1
(* n (factorial-bad (- n 1)))))

Thunks delay

We know how to delay evaluation: put expression in a function!
– Thanks to closures, can use all the same variables later

A zero-argument function used to delay evaluation is called a thunk
– As a verb: thunk the expression

This works (but it is silly to wrap if like this):

Autumn 2018 3CSE341: Programming Languages

(define (my-if x y z)
(if x (y) (z)))

(define (fact n)
(my-if (= n 0)

(lambda() 1)
(lambda() (* n (fact (- n 1))))))

The key point

• Evaluate an expression e to get a result:

• A function that when called, evaluates e and returns result
– Zero-argument function for “thunking”

• Evaluate e to some thunk and then call the thunk

• Next: Powerful idioms related to delaying evaluation and/or
avoided repeated or unnecessary computations
– Some idioms also use mutation in encapsulated ways

Autumn 2018 4CSE341: Programming Languages

e

(lambda () e)

(e)

Avoiding expensive computations
Thunks let you skip expensive computations if they are not needed

Great if take the true-branch:

But worse if you end up using the thunk more than once:

In general, might not know many times a result is needed
Autumn 2018 5CSE341: Programming Languages

(define (f th)
(if (…) 0 (… (th) …)))

(define (f th)
(… (if (…) 0 (… (th) …))

(if (…) 0 (… (th) …))
…
(if (…) 0 (… (th) …))))

Best of both worlds

Assuming some expensive computation has no side effects, ideally
we would:

– Not compute it until needed
– Remember the answer so future uses complete immediately

Called lazy evaluation

Languages where most constructs, including function arguments,
work this way are lazy languages

– Haskell

Racket predefines support for promises, but we can make our own
– Thunks and mutable pairs are enough

Autumn 2018 6CSE341: Programming Languages

Delay and force

Autumn 2018 7CSE341: Programming Languages

(define (my-delay th)
(mcons #f th))

(define (my-force p)
(if (mcar p)

(mcdr p)
(begin (set-mcar! p #t)

(set-mcdr! p ((mcdr p)))
(mcdr p))))

An ADT represented by a mutable pair
• #f in car means cdr is unevaluated thunk

– Really a one-of type: thunk or result-of-thunk
• Ideally hide representation in a module

Using promises

Autumn 2018 8CSE341: Programming Languages

(define (f p)
(… (if (…) 0 (… (my-force p) …))

(if (…) 0 (… (my-force p) …))
…
(if (…) 0 (… (my-force p) …))))

(f (my-delay (lambda () e)))

Lessons From Example

See code file for example that does multiplication using a very slow
addition helper function

• With thunking second argument:
– Great if first argument 0
– Okay if first argument 1
– Worse otherwise

• With precomputing second argument:
– Okay in all cases

• With thunk that uses a promise for second argument:
– Great if first argument 0
– Okay otherwise

Autumn 2018 9CSE341: Programming Languages

Streams

• A stream is an infinite sequence of values
– So cannot make a stream by making all the values
– Key idea: Use a thunk to delay creating most of the sequence
– Just a programming idiom

A powerful concept for division of labor:
– Stream producer knows how to create any number of values
– Stream consumer decides how many values to ask for

Some examples of streams you might (not) be familiar with:
– User actions (mouse clicks, etc.)
– UNIX pipes: cmd1 | cmd2 has cmd2 “pull” data from cmd1
– Output values from a sequential feedback circuit

Autumn 2018 10CSE341: Programming Languages

Using streams

We will represent streams using pairs and thunks

Let a stream be a thunk that when called returns a pair:
'(next-answer . next-thunk)

So given a stream s, the client can get any number of elements
– First: (car (s))
– Second: (car ((cdr (s))))
– Third: (car ((cdr ((cdr (s))))))
(Usually bind (cdr (s)) to a variable or pass to a recursive
function)

Autumn 2018 11CSE341: Programming Languages

Example using streams

This function returns how many stream elements it takes to find
one for which tester does not return #f

– Happens to be written with a tail-recursive helper function

– (stream) generates the pair
– So recursively pass (cdr pr), the thunk for the rest of the

infinite sequence

Autumn 2018 12CSE341: Programming Languages

(define (number-until stream tester)
(letrec ([f (lambda (stream ans)

(let ([pr (stream)])
(if (tester (car pr))

ans
(f (cdr pr) (+ ans 1)))))])

(f stream 1)))

Streams

Coding up a stream in your program is easy
– We will do functional streams using pairs and thunks

Let a stream be a thunk that when called returns a pair:
'(next-answer . next-thunk)

Saw how to use them, now how to make them…
– Admittedly mind-bending, but uses what we know

Autumn 2018 13CSE341: Programming Languages

Making streams
• How can one thunk create the right next thunk? Recursion!

– Make a thunk that produces a pair where cdr is next thunk
– A recursive function can return a thunk where recursive call

does not happen until thunk is called

Autumn 2018 14CSE341: Programming Languages

(define ones (lambda () (cons 1 ones)))

(define nats
(letrec ([f (lambda (x)

(cons x (lambda () (f (+ x 1)))))])
(lambda () (f 1))))

(define powers-of-two
(letrec ([f (lambda (x)

(cons x (lambda () (f (* x 2)))))])
(lambda () (f 2))))

Getting it wrong
• This uses a variable before it is defined

• This goes into an infinite loop making an infinite-length list

• This is a stream: thunk that returns a pair with cdr a thunk

Autumn 2018 15CSE341: Programming Languages

(define ones (lambda () (cons 1 ones)))
(define (ones) (cons 1 ones))

(define ones-really-bad (cons 1 ones-really-bad))

(define ones-bad (lambda () cons 1 (ones-bad)))
(define (ones-bad) (cons 1 (ones-bad)))

Memoization

• If a function has no side effects and does not read mutable
memory, no point in computing it twice for the same arguments
– Can keep a cache of previous results
– Net win if (1) maintaining cache is cheaper than recomputing

and (2) cached results are reused

• Similar to promises, but if the function takes arguments, then
there are multiple “previous results”

• For recursive functions, this memoization can lead to
exponentially faster programs
– Related to algorithmic technique of dynamic programming

Autumn 2018 16CSE341: Programming Languages

How to do memoization: see example

• Need a (mutable) cache that all calls using the cache share
– So must be defined outside the function(s) using it

• See code for an example with Fibonacci numbers

– Good demonstration of the idea because it is short, but, as
shown in the code, there are also easier less-general ways
to make fibonacci efficient

– (An association list (list of pairs) is a simple but sub-optimal
data structure for a cache; okay for our example)

Autumn 2018 17CSE341: Programming Languages

assoc

• Example uses assoc, which is just a library function you could
look up in the Racket reference manual:

(assoc v lst) takes a list of pairs and locates the first
element of lst whose car is equal to v according to is-
equal?. If such an element exists, the pair (i.e., an element of
lst) is returned. Otherwise, the result is #f.

• Returns #f for not found to distinguish from finding a pair with
#f in cdr

Autumn 2018 18CSE341: Programming Languages

	CSE341: Programming Languages��Lecture 14�Thunks, Laziness, Streams, Memoization
	Delayed evaluation
	Thunks delay
	The key point
	Avoiding expensive computations
	Best of both worlds
	Delay and force
	Using promises
	Lessons From Example
	Streams
	Using streams
	Example using streams
	Streams
	Making streams
	Getting it wrong
	Memoization
	How to do memoization: see example
	assoc

