
CSE341: Programming Languages

Lecture 13
Racket Introduction

Dan Grossman
Autumn 2018

Racket
Next two units will use the Racket language (not ML) and the
DrRacket programming environment (not Emacs)

– Installation / basic usage instructions on course website

• Like ML, functional focus with imperative features
– Anonymous functions, closures, no return statement, etc.
– But we will not use pattern-matching

• Unlike ML, no static type system: accepts more programs, but
most errors do not occur until run-time

• Really minimalist syntax

• Advanced features like macros, modules, quoting/eval,
continuations, contracts, …
– Will do only a couple of these

Autumn 2018 2CSE341: Programming Languages

Racket vs. Scheme

• Scheme and Racket are very similar languages
– Racket “changed its name” in 2010

• Racket made some non-backward-compatible changes…
– How the empty list is written
– Cons cells not mutable
– How modules work
– Etc.
… and many additions

• Result: A modern language used to build some real systems
– More of a moving target: notes may become outdated
– Online documentation, particularly “The Racket Guide”

Autumn 2018 3CSE341: Programming Languages

Getting started

DrRacket “definitions window” and “interactions window” very
similar to how we used Emacs and a REPL, but more user-friendly

– DrRacket has always focused on good-for-teaching
– See usage notes for how to use REPL, testing files, etc.
– Easy to learn to use on your own, but lecture demos will help

Free, well-written documentation:
– http://racket-lang.org/
– The Racket Guide especially,

http://docs.racket-lang.org/guide/index.html

Autumn 2018 4CSE341: Programming Languages

File structure

Start every file with a line containing only
#lang racket

(Can have comments before this, but not code)

A file is a module containing a collection of definitions (bindings)…

Autumn 2018 5CSE341: Programming Languages

Example

Autumn 2018 6CSE341: Programming Languages

#lang racket
(define x 3)
(define y (+ x 2))
(define cube ; function
(lambda (x)
(* x (* x x))))

(define pow ; recursive function
(lambda (x y)
(if (= y 0)

1
(* x (pow x (- y 1))))))

Some niceties
Many built-in functions (a.k.a. procedures) take any number of args

– Yes * is just a function
– Yes you can define your own variable-arity functions (not

shown here)

Better style for non-anonymous function definitions (just sugar):

Autumn 2018 7CSE341: Programming Languages

(define cube
(lambda (x)
(* x x x)))

(define (cube x)
(* x x x))

(define (pow x y)
(if (= y 0)

1
(* x (pow x (- y 1)))))

An old friend: currying
Currying is an idiom that works in any language with closures

– Less common in Racket because it has real multiple args

Autumn 2018 8CSE341: Programming Languages

(define pow
(lambda (x)
(lambda (y)
(if (= y 0)

1
(* x ((pow x) (- y 1)))))))

(define three-to-the (pow 3))
(define eightyone (three-to-the 4))
(define sixteen ((pow 2) 4))

Sugar for defining curried functions:

(No sugar for calling curried functions)

(define ((pow x) y) (if …

Another old-friend: List processing

Empty list: null
Cons constructor: cons
Access head of list: car
Access tail of list: cdr
Check for empty: null?
Notes:

– Unlike Scheme, () doesn’t work for null, but '() does
– (list e1 … en) for building lists
– Names car and cdr are a historical accident

Autumn 2018 9CSE341: Programming Languages

Examples

Autumn 2018 10CSE341: Programming Languages

(define (sum xs)
(if (null? xs)

0
(+ (car xs) (sum (cdr xs)))))

(define (my-append xs ys)
(if (null? xs)

ys
(cons (car xs) (my-append (cdr xs) ys))))

(define (my-map f xs)
(if (null? xs)

null
(cons (f (car xs)) (my-map f (cdr xs)))))

Racket syntax

Ignoring a few “bells and whistles,”
Racket has an amazingly simple syntax

A term (anything in the language) is either:
– An atom, e.g., #t, #f, 34, "hi", null, 4.0, x, …
– A special form, e.g., define, lambda, if

• Macros will let us define our own
– A sequence of terms in parens: (t1 t2 … tn)

• If t1 a special form, semantics of sequence is special
• Else a function call

• Example: (+ 3 (car xs))
• Example: (lambda (x) (if x "hi" #t))
Autumn 2018 11CSE341: Programming Languages

Brackets

Minor note:

Can use [anywhere you use (, but must match with]
– Will see shortly places where […] is common style
– DrRacket lets you type) and replaces it with] to match

Autumn 2018 12CSE341: Programming Languages

Why is this good?

By parenthesizing everything, converting the program text into a
tree representing the program (parsing) is trivial and unambiguous

– Atoms are leaves
– Sequences are nodes with elements as children
– (No other rules)

Also makes indentation easy

Example:

No need to discuss “operator precedence” (e.g., x + y * z)

Autumn 2018 13CSE341: Programming Languages

(define cube
(lambda (x)
(* x x x)))

define

cube lambda
x *

xx x

Parenthesis bias

• If you look at the HTML for a web page, it takes the same
approach:
– (foo written <foo>
–) written </foo>

• But for some reason, LISP/Scheme/Racket is the target of
subjective parenthesis-bashing
– Bizarrely, often by people who have no problem with HTML
– You are entitled to your opinion about syntax, but a good

historian wouldn’t refuse to study a country where he/she
didn’t like people’s accents

Autumn 2018 14CSE341: Programming Languages

Autumn 2018 15CSE341: Programming Languages

http://xkcd.com/297/

Parentheses matter

You must break yourself of one habit for Racket:

– Do not add/remove parens because you feel like it
• Parens are never optional or meaningless!!!

– In most places (e) means call e with zero arguments

– So ((e)) means call e with zero arguments and call the
result with zero arguments

Without static typing, often get hard-to-diagnose run-time errors

Autumn 2018 16CSE341: Programming Languages

Examples (more in code)

Correct:

Treats 1 as a zero-argument function (run-time error):

Gives if 5 arguments (syntax error)

3 arguments to define (including (n)) (syntax error)

Treats n as a function, passing it * (run-time error)

Autumn 2018 17CSE341: Programming Languages

(define (fact n)(if (= n 0) 1 (* n (fact (- n 1)))))

(define (fact n)(if (= n 0) (1)(* n (fact (- n 1)))))

(define (fact n)(if = n 0 1 (* n (fact (- n 1)))))

(define fact (n)(if (= n 0) 1 (* n (fact (- n 1)))))

(define (fact n)(if (= n 0) 1 (n * (fact (- n 1)))))

Dynamic typing

Major topic coming later: contrasting static typing (e.g., ML) with
dynamic typing (e.g., Racket)

For now:
– Frustrating not to catch “little errors” like (n * x) until you

test your function
– But can use very flexible data structures and code without

convincing a type checker that it makes sense

Example:
– A list that can contain numbers or other lists
– Assuming lists or numbers “all the way down,” sum all the

numbers…

Autumn 2018 18CSE341: Programming Languages

Example

Autumn 2018 19CSE341: Programming Languages

(define (sum xs)
(if (null? xs)

0
(if (number? (car xs))

(+ (car xs) (sum (cdr xs)))
(+ (sum (car xs)) (sum (cdr xs))))))

• No need for a fancy datatype binding, constructors, etc.
• Works no matter how deep the lists go
• But assumes each element is a list or a number

– Will get a run-time error if anything else is encountered

Better style

Avoid nested if-expressions when you can use cond-expressions
instead

– Can think of one as sugar for the other

General syntax: (cond [e1a e1b]
[e2a e2b]
…
[eNa eNb])

– Good style: eNa should be #t

Autumn 2018 20CSE341: Programming Languages

Example

Autumn 2018 21CSE341: Programming Languages

(define (sum xs)
(cond [(null? xs) 0]

[(number? (car xs))
(+ (car xs) (sum (cdr xs)))]
[#t (+ (sum (car xs)) (sum (cdr xs)))]))

A variation

As before, we could change our spec to say instead of errors on
non-numbers, we should just ignore them
So this version can work for any list (or just a number)

– Compare carefully, we did not just add a branch

Autumn 2018 22CSE341: Programming Languages

(define (sum xs)
(cond [(null? xs) 0]

[(number? xs) xs]
[(list? xs)
(+ (sum (car xs)) (sum (cdr xs)))]
[#t 0]))

What is true?

For both if and cond, test expression can evaluate to anything
– It is not an error if the result is not #t or #f
– (Apologies for the double-negative)

Semantics of if and cond:
– “Treat anything other than #f as true”
– (In some languages, other things are false, not in Racket)

This feature makes no sense in a statically typed language

Some consider using this feature poor style, but it can be
convenient

Autumn 2018 23CSE341: Programming Languages

Local bindings

• Racket has 4 ways to define local variables
– let
– let*
– letrec
– define

• Variety is good: They have different semantics
– Use the one most convenient for your needs, which helps

communicate your intent to people reading your code
• If any will work, use let

– Will help us better learn scope and environments

• Like in ML, the 3 kinds of let-expressions can appear anywhere

Autumn 2018 24CSE341: Programming Languages

Let

A let expression can bind any number of local variables
– Notice where all the parentheses are

The expressions are all evaluated in the environment from before
the let-expression

– Except the body can use all the local variables of course
– This is not how ML let-expressions work
– Convenient for things like (let ([x y][y x]) …)

Autumn 2018 25CSE341: Programming Languages

(define (silly-double x)
(let ([x (+ x 3)]

[y (+ x 2)])
(+ x y -5)))

Let*

Syntactically, a let* expression is a let-expression with 1 more
character

The expressions are evaluated in the environment produced from
the previous bindings

– Can repeat bindings (later ones shadow)
– This is how ML let-expressions work

Autumn 2018 26CSE341: Programming Languages

(define (silly-double x)
(let* ([x (+ x 3)]

[y (+ x 2)])
(+ x y -8)))

Letrec

Syntactically, a letrec expression is also the same

The expressions are evaluated in the environment that includes all
the bindings

– Needed for mutual recursion
– But expressions are still evaluated in order: accessing an

uninitialized binding raises an error
• Remember function bodies not evaluated until called

Autumn 2018 27CSE341: Programming Languages

(define (silly-triple x)
(letrec ([y (+ x 2)]

[f (lambda(z) (+ z y w x))]
[w (+ x 7)])

(f -9)))

More letrec

• Letrec is ideal for recursion (including mutual recursion)

• Do not use later bindings except inside functions
– This example will raise an error when called

Autumn 2018 28CSE341: Programming Languages

(define (silly-mod2 x)
(letrec
([even? ((x)(if (zero? x) #t (odd? (- x 1))))]
[odd? ((x)(if (zero? x) #f (even? (- x 1))))])
(if (even? x) 0 1)))

(define (bad-letrec x)
(letrec ([y z]

[z 13])
(if x y z)))

Local defines

• In certain positions, like the beginning of function bodies, you
can put defines
– For defining local variables, same semantics as letrec

• Local defines is preferred Racket style, but course materials will
avoid them to emphasize let, let*, letrec distinction
– You can choose to use them on homework or not

Autumn 2018 29CSE341: Programming Languages

(define (silly-mod2 x)
(define (even? x)(if (zero? x) #t (odd? (- x 1))))
(define (odd? x) (if (zero? x) #f (even?(- x 1))))
(if (even? x) 0 1))

Top-level

The bindings in a file work like local defines, i.e., letrec
– Like ML, you can refer to earlier bindings
– Unlike ML, you can also refer to later bindings
– But refer to later bindings only in function bodies

• Because bindings are evaluated in order
• Get an error if try to use a not-yet-defined binding

– Unlike ML, cannot define the same variable twice in module
• Would make no sense: cannot have both in environment

Autumn 2018 30CSE341: Programming Languages

REPL

Unfortunate detail:
– REPL works slightly differently

• Not quite let* or letrec
•

– Best to avoid recursive function definitions or forward
references in REPL

• Actually okay unless shadowing something (you may not
know about) – then weirdness ensues

• And calling recursive functions is fine of course

Autumn 2018 31CSE341: Programming Languages

Optional: Actually…

• Racket has a module system
– Each file is implicitly a module

• Not really “top-level”
– A module can shadow bindings from other modules it uses

• Including Racket standard library
– So we could redefine + or any other function

• But poor style
• Only shadows in our module (else messes up rest of

standard library)

• (Optional note: Scheme is different)

Autumn 2018 32CSE341: Programming Languages

Set!

• Unlike ML, Racket really has assignment statements
– But used only-when-really-appropriate!

• For the x in the current environment, subsequent lookups of x
get the result of evaluating expression e
– Any code using this x will be affected
– Like x = e in Java, C, Python, etc.

• Once you have side-effects, sequences are useful:

Autumn 2018 33CSE341: Programming Languages

(set! x e)

(begin e1 e2 … en)

Example

Example uses set! at top-level; mutating local variables is similar

Not much new here:
– Environment for closure determined when function is defined,

but body is evaluated when function is called
– Once an expression produces a value, it is irrelevant how the

value was produced
Autumn 2018 34CSE341: Programming Languages

(define b 3)
(define f (lambda (x) (* 1 (+ x b))))
(define c (+ b 4)) ; 7
(set! b 5)
(define z (f 4)) ; 9
(define w c) ; 7

Top-level

• Mutating top-level definitions is particularly problematic
– What if any code could do set! on anything?
– How could we defend against this?

• A general principle: If something you need not to change might
change, make a local copy of it. Example:

Could use a different name for local copy but do not need to

Autumn 2018 35CSE341: Programming Languages

(define b 3)
(define f
(let ([b b])
(lambda (x) (* 1 (+ x b)))))

But wait…

• Simple elegant language design:
– Primitives like + and * are just predefined variables bound to

functions
– But maybe that means they are mutable
– Example continued:

– Even that won’t work if f uses other functions that use things
that might get mutated – all functions would need to copy
everything mutable they used

Autumn 2018 36CSE341: Programming Languages

(define f
(let ([b b]

[+ +]
[* *])

(lambda (x) (* 1 (+ x b)))))

No such madness

In Racket, you do not have to program like this
– Each file is a module
– If a module does not use set! on a top-level variable, then

Racket makes it constant and forbids set! outside the module
– Primitives like +, *, and cons are in a module that does not

mutate them

Showed you this for the concept of copying to defend against mutation
– Easier defense: Do not allow mutation
– Mutable top-level bindings a highly dubious idea

Autumn 2018 37CSE341: Programming Languages

The truth about cons
cons just makes a pair

– Often called a cons cell
– By convention and standard library, lists are nested pairs that

eventually end with null

Passing an improper list to functions like length is a run-time error

Autumn 2018 38CSE341: Programming Languages

(define pr (cons 1 (cons #t "hi"))) ; '(1 #t . "hi")
(define lst (cons 1 (cons #t (cons "hi" null))))
(define hi (cdr (cdr pr)))
(define hi-again (car (cdr (cdr lst))))
(define hi-another (caddr lst))
(define no (list? pr))
(define yes (pair? pr))
(define of-course (and (list? lst) (pair? lst)))

The truth about cons
So why allow improper lists?

– Pairs are useful
– Without static types, why distinguish (e1,e2) and e1::e2

Style:
– Use proper lists for collections of unknown size
– But feel free to use cons to build a pair

• Though structs (like records) may be better

Built-in primitives:
– list? returns true for proper lists, including the empty list
– pair? returns true for things made by cons

• All improper and proper lists except the empty list

Autumn 2018 39CSE341: Programming Languages

cons cells are immutable

What if you wanted to mutate the contents of a cons cell?
– In Racket you cannot (major change from Scheme)
– This is good

• List-aliasing irrelevant
• Implementation can make list? fast since listness is

determined when cons cell is created

Autumn 2018 40CSE341: Programming Languages

Set! does not change list contents

This does not mutate the contents of a cons cell:

– Like Java’s x = new Cons(42,null), not x.car = 42

Autumn 2018 41CSE341: Programming Languages

(define x (cons 14 null))
(define y x)
(set! x (cons 42 null))
(define fourteen (car y))

mcons cells are mutable

Since mutable pairs are sometimes useful (will use them soon),
Racket provides them too:

– mcons
– mcar
– mcdr
– mpair?
– set-mcar!
– set-mcdr!

Run-time error to use mcar on a cons cell or car on an mcons cell

Autumn 2018 42CSE341: Programming Languages

