
CSE341: Programming Languages

Lecture 12
Equivalence

Dan Grossman
Autumn 2018

Last Topic of Unit

More careful look at what “two pieces of code are equivalent” means

– Fundamental software-engineering idea

– Made easier with
• Abstraction (hiding things)
• Fewer side effects

Not about any “new ways to code something up”

Autumn 2018 2CSE341: Programming Languages

Equivalence

Must reason about “are these equivalent” all the time
– The more precisely you think about it the better

• Code maintenance: Can I simplify this code?

• Backward compatibility: Can I add new features without
changing how any old features work?

• Optimization: Can I make this code faster?

• Abstraction: Can an external client tell I made this change?

To focus discussion: When can we say two functions are
equivalent, even without looking at all calls to them?

– May not know all the calls (e.g., we are editing a library)

Autumn 2018 3CSE341: Programming Languages

A definition

Two functions are equivalent if they have the same “observable
behavior” no matter how they are used anywhere in any program

Given equivalent arguments, they:
– Produce equivalent results
– Have the same (non-)termination behavior
– Mutate (non-local) memory in the same way
– Do the same input/output
– Raise the same exceptions

Notice it is much easier to be equivalent if:
• There are fewer possible arguments, e.g., with a type system

and abstraction
• We avoid side-effects: mutation, input/output, and exceptions

Autumn 2018 4CSE341: Programming Languages

Example

Since looking up variables in ML has no side effects, these two
functions are equivalent:

But these next two are not equivalent in general: it depends on
what is passed for f

– Are equivalent if argument for f has no side-effects

– Example: g ((fn i => print "hi" ; i), 7)
– Great reason for “pure” functional programming

Autumn 2018 5CSE341: Programming Languages

fun f x = x + x val y = 2
fun f x = y * x

fun g (f,x) =
(f x) + (f x)

val y = 2
fun g (f,x) =

y * (f x)

Another example

These are equivalent only if functions bound to g and h do not
raise exceptions or have side effects (printing, updating state, etc.)

– Again: pure functions make more things equivalent

– Example: g divides by 0 and h mutates a top-level reference
– Example: g writes to a reference that h reads from

Autumn 2018 6CSE341: Programming Languages

fun f x =
let
val y = g x
val z = h x

in
(y,z)

end

fun f x =
let
val z = h x
val y = g x

in
(y,z)

end

One that really matters

Once again, turning the left into the right is great but only if the
functions are pure:

Autumn 2018 7CSE341: Programming Languages

map f (map g xs) map (f o g) xs

Syntactic sugar

Using or not using syntactic sugar is always equivalent
– By definition, else not syntactic sugar

Example:

But be careful about evaluation order

Autumn 2018 8CSE341: Programming Languages

fun f x =
if x
then g x
else false

fun f x =
x andalso g x

fun f x =
if g x
then x
else false

fun f x =
x andalso g x

Standard equivalences
Three general equivalences that always work for functions

– In any (?) decent language

1. Consistently rename bound variables and uses

But notice you can’t use a variable name already used in the
function body to refer to something else

Autumn 2018 9CSE341: Programming Languages

val y = 14
fun f x = x+y+x

val y = 14
fun f z = z+y+z

val y = 14
fun f x = x+y+x

val y = 14
fun f y = y+y+y

fun f x =
let val y = 3
in x+y end

fun f y =
let val y = 3
in y+y end

Standard equivalences

Three general equivalences that always work for functions
– In (any?) decent language

2. Use a helper function or do not

But notice you need to be careful about environments

Autumn 2018 10CSE341: Programming Languages

val y = 14
fun f x = x+y+x
fun g z = (f z)+z

val y = 14
fun g z = (z+y+z)+z

val y = 14
fun f x = x+y+x
val y = 7
fun g z = (f z)+z

val y = 14
val y = 7
fun g z = (z+y+z)+z

Standard equivalences

Three general equivalences that always work for functions
– In (any?) decent language

3. Unnecessary function wrapping

But notice that if you compute the function to call and that
computation has side-effects, you have to be careful

Autumn 2018 11CSE341: Programming Languages

fun f x = x+x
fun g y = f y

fun f x = x+x
val g = f

fun f x = x+x
fun h () = (print "hi";

f)
fun g y = (h()) y

fun f x = x+x
fun h () = (print "hi";

f)
val g = (h())

One more

If we ignore types, then ML let-bindings can be syntactic sugar for
calling an anonymous function:

– These both evaluate e1 to v1, then evaluate e2 in an
environment extended to map x to v1

– So exactly the same evaluation of expressions and result

But in ML, there is a type-system difference:
– x on the left can have a polymorphic type, but not on the right
– Can always go from right to left
– If x need not be polymorphic, can go from left to right

Autumn 2018 12CSE341: Programming Languages

let val x = e1
in e2 end

(fn x => e2) e1

What about performance?

According to our definition of equivalence, these two functions are
equivalent, but we learned one is awful

– (Actually we studied this before pattern-matching)

Autumn 2018 13CSE341: Programming Languages

fun max xs =
case xs of
[] => raise Empty

| x::[] => x
| x::xs’ =>

if x > max xs’
then x
else max xs’

fun max xs =
case xs of
[] => raise Empty

| x::[] => x
| x::xs’ =>

let
val y = max xs’

in
if x > y
then x
else y

end

Different definitions for different jobs
• PL Equivalence (341): given same inputs, same outputs and effects

– Good: Lets us replace bad max with good max
– Bad: Ignores performance in the extreme

• Asymptotic equivalence (332): Ignore constant factors
– Good: Focus on the algorithm and efficiency for large inputs
– Bad: Ignores “four times faster”

• Systems equivalence (333): Account for constant overheads,
performance tune
– Good: Faster means different and better
– Bad: Beware overtuning on “wrong” (e.g., small) inputs; definition

does not let you “swap in a different algorithm”

Claim: Computer scientists implicitly (?) use all three every (?) day

Autumn 2018 14CSE341: Programming Languages

