\qquad

CSE341 Spring 2016, Midterm Examination April 29, 2016

Please do not turn the page until 10:30.

Rules:

- The exam is closed-book, closed-note, etc. except for one side of one $8.5 x 11$ in piece of paper.
- Please stop promptly at 11:20.
- There are $\mathbf{1 0 0}$ points, distributed unevenly among $\mathbf{6}$ questions (all with multiple parts):
- The exam is printed double-sided.

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit. But clearly indicate what is your final answer.
- The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the questions.
- If you have questions, ask.
- Relax. You are here to learn.

Name: \qquad

1. (24 points) This problem uses this datatype binding, where a value of type pipe describes the shape of a pipe system (e.g., for carrying water).
datatype pipe = Straight of int
| Curve of int * real
| Tee of pipe * pipe * pipe
| Sequence of pipe * pipe

- Straight i represents a straight pipe of length i centimeters.
- Curve (i, r) represents a curved pipe of length i centimeters with an arc of r radians, meaning the "curve" occupies $r /(2 \pi)$ of a circle.
- Tee ($\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3$) is a tee (also known as a fork?) that connects the three pipes together, with p 2 and p 3 being in a line that is at a right angle to p 1 .
- Sequence ($\mathrm{p} 1, \mathrm{p} 2$) connects the two pipes together.
(a) Write a function check_pipe of type pipe -> bool that returns true if and only if all lengths anywhere in the argument are positive and all arcs in curves are strictly between 0 and 2π. (You can use Math.pi, which has type real.)
(b) Write a function scale_model of type pipe $*$ int $->$ pipe that creates a pipe of the same shape as the first input but with all lengths scaled (multiplied) by the second input. (Arcs stay the same.)
(c) Consider this code that uses your answer to part (b);
val little_p = Sequence (Straight (3+4), Curve (4+5, 1.5))
val big_p = scale_model (little_p, 10)
i. What value is bound to little_p?
ii. What value is bound to big_p?

Name: \qquad
2. ($\mathbf{1 7}$ points) This problem uses this ML code:

```
fun foo (xs,ys) =
    case (xs,ys) of
        ([],[]) => [] (* branch 1 *)
        | ([],_) => ys (* branch 2 *)
        | (_,[]) => xs (* branch 3 *)
        | (x::xs',_) => x::(foo(ys,xs')) (* branch 4 *)
```

(a) Give three different inputs to foo that all lead to the output [1,2,3,4]. Each of your answers should already be a value (i.e., not contain other expressions like addition or function calls).
(b) Is foo tail-recursive?
(c) What is the type of foo?
(d) For each of the following, give exactly one of these answers:
A. It leads to a "match nonexhaustive" warning.
B. It leads to no warning and the resulting function is equivalent to foo (the branch was unnecessary).
C. It leads to no warning but the resulting function is not equivalent.
i. What happens if we remove just branch $\mathbf{1}$ (and, for parsing purposes, the \mid character that follows)?
ii. What happens if we remove just branch 2?
iii. What happens if we remove just branch 3?
iv. What happens if we remove just branch 4?

Name: \qquad
3. ($\mathbf{1 2}$ points) For each of the following programs, give the value ans is bound to after evaluation.
(a) val $\mathrm{c}=12$
fun $f \mathrm{a}=$ let
val $\mathrm{b}=\mathrm{a}-1$
val $\mathrm{a}=\mathrm{b}-1$
val $\mathrm{b}=\mathrm{a}-1$
in
c - b end
val $\mathrm{c}=10$
val ans $=f \mathrm{c}$
(b) fun f p $=$
let
val $q=p 1$
val $\mathrm{r}=\mathrm{q} 2$ in
$(\mathrm{r} 3)+(\mathrm{p} 000)$ end
fun $\mathrm{g} x=$ let
val $\mathrm{y}=6$
in
f (fn z => fn w => fn t => z + w + t + y) end
val ans $=\mathrm{g} 7$
(c) exception E
fun h a $=$
case a of
NONE => raise E
| SOME a => a
val a $=12$
val ans $=\mathrm{h}(\mathrm{h}($ SOME (SOME a)))

Name \qquad
4. (20 points)
(a) Without using any helper functions (except : : and =), write a function nonempty_for_x of type int -> ((int -> string) list) -> (string list) as follows:

- It takes two arguments x and flist in curried form.
- The output list contains no empty strings (i.e., "").
- The $i^{\text {th }}$ element of the output list is the $i^{\text {th }}$ non-empty string produced by calling each element of flist in order with x.
Hint: You can see if a string is empty by comparing it to " " using =.
(b) Create a function nonempty_for_x' that is equivalent to nonempty_for_x by filling in these blanks with anonymous functions:

(c) Does your nonempty_for_x actually have a more general type than the type specified? If so, what is it?
(d) Does your nonempty_for_x' actually have a more general type than the type specified? If so, what is it?

Name: \qquad
5. ($\mathbf{9}$ points)
(a) What is x bound to after this ML code evaluates?
val $x=$ List.filter $(f n i=>i>32$ andalso $i<39)[0,99,35,36,14]$
(b) What is y bound to after this ML code evaluates?
fun filterish f xs $=$ List.foldl (fn (i,acc) \Rightarrow if f i then i::acc else acc) [] xs

(c) In approximately one English sentence, explain the general difference between List.filter and filterish.

Name: \qquad
6. ($\mathbf{1 8}$ points) This problem considers two ML structures and two ML signatures, all related to intervals (also known as ranges) of integers where we consider a range like " 3 to 7 " to include both endpoints.

```
signature INTERVAL1 =
sig
type t = int * int 
type t = int * int 
val make : int * int -> t 
val size : t -> int
end
signature INTERVAL2 =
sig
type t
val make : int * int -> t
val contains : t * int -> bool
val size : t -> int
end
```

```
structure IntervalA =
struct
type t = int * int
fun make (x,y) = (Int.min(x,y), Int.max (x,y))
fun contains ((x,y),i) = x <= i andalso i <= y
structure IntervalB =
struct
type t = int * int
fun make ( }\textrm{x},\textrm{y})=(\operatorname{Int.min}(\textrm{x},\textrm{y}), abs (y - x)
fun contains ((x,len),i) = x <= i andalso i <= x + len
fun size (_,len) = len
fun size (x,y) = y - x
end
end
```

(a) Does IntervalA have signature INTERVAL1 (i.e., would structure IntervalA :> INTERVAL1 ... typecheck)?
(b) Does IntervalA have signature INTERVAL2 (i.e., would structure IntervalA :> INTERVAL2 ... typecheck)?
(c) Does IntervalB have signature INTERVAL1 (i.e., would structure IntervalB :> INTERVAL1 ... typecheck)?
(d) Does IntervalB have signature INTERVAL2 (i.e., would structure IntervalB :> INTERVAL2 ... typecheck)?
(e) Suppose a program has two structures S1 and S2 both with signature INTERVAL1. Further suppose S1's make is the same as in IntervalA and S2's size is the same as in IntervalB.
i. Would S2.size (S1.make ($5,{ }^{\sim} 5$)) type-check?
ii. Regardless of whether it type-checks, if we assume we can evaluate it, what would S2.size (S1.make ($5,{ }^{\sim} 5$)) evaluate to?
(f) Repeat the previous question assuming S1 and S2 both have signature INTERVAL2.
(g) What is the type of size inside IntervalA? (Do not use type t in your answer.)
(h) What is the type of size inside IntervalB? (Do not use type t in your answer.)

Name:

Here is an extra page in case you need it. If you use it for a question, please write "see also extra sheet" or similar on the page with the question.

