
CSE 341:
Programming Languages

Section AC with Nate Yazdani

agenda
• mutual recursion

• module system

mutual recursion
• what if we need a function f to call g, and a

function g to call f

• this happens more often than you might think!

• a silly example, that sadly doesn’t work :-(

fun even x =
 x = 0 orelse odd (x - 1)
fun odd x =
 x <> 0 andalso (x = 1 orelse even (x - 1))

mutual recursion
• SML has a special keyword to help us out

• also works with mutually recursive datatype
bindings

fun even x =
 x = 0 orelse odd (x - 1)
and odd x =
 x <> 0 andalso (x = 1 orelse even (x - 1))

datatype even = Zero | ESucc of odd
and odd = OSucc of even

mutual recursion
• SML has a special keyword to help us out

• also works with mutually recursive datatype
bindings

fun even x =
 x = 0 orelse odd (x - 1)
and odd x =
 x <> 0 andalso (x = 1 orelse even (x - 1))

datatype even = Zero | ESucc of odd
and odd = OSucc of even

I fully admit that this is a contrived example :-)

module system
• good for organizing your code and managing

namespaces

• good for maintaining invariants

structure name = struct bindings end

practice with modules!

work together to design an SML module that
implements the QUEUE abstract data type

signature QUEUE = sig
 type 'a queue
 exception Underflow
 val empty : 'a queue
 val isEmpty : 'a queue -> bool
 val enqueue : 'a * 'a queue -> 'a queue
 val dequeue : 'a queue -> 'a * 'a queue
 val map : ('a -> 'b) -> 'a queue -> 'b queue
end

practice with modules!
structure Queue :> QUEUE = struct
 exception Underflow
 type 'a queue = 'a list * 'a list
 val empty = ([], [])
 fun isEmpty ([], []) = true
 | isEmpty (_, _) = false
 fun enqueue (v, (en, de)) = (v :: en, de)
 fun dequeue ([], []) = raise Underflow
 | dequeue (en, v :: de) = (v, (en, de))
 | dequeue (en, []) =
 dequeue([], List.rev en)
 fun map f (en, de) =
 (List.map f en, List.map f de)
end

