
CSE 341 Section
Preparing for MUPL!

Justin Harjanto

Today’s Agenda
• Building a MUPL Interpreter

• Assume Correct Syntax

• Check for Correct Semantics

• Evaluating the AST

• MUPL “Macros”

• Eval, Quote, and Quasiquote

2

Building a MUPL Interpreter

• Skipping the parsing phase ← Do Not Implement

• Interpreter written in Racket
• Racket is the “Metalanguage”

• MUPL code represented as an AST
• AST nodes represented as Racket structs

• Can assume AST has valid syntax

• Can NOT assume AST has valid semantics
3

Correct Syntax Examples

4

(struct int (num) #:transparent)

(struct add (e1 e2) #:transparent)

(struct ifnz (e1 e2 e3) #:transparent)

(int 34)

(add (int 34) (int 30))

(ifnz (add (int 5) (int 7)) (int 12) (int 1))

We can need to evaluate these MUPL programs:

Given this syntax:

Incorrect Syntax Examples

5

(struct int (num) #:transparent)

(struct add (e1 e2) #:transparent)

(struct ifnz (e1 e2 e3) #:transparent)

(int “dan then dog”)

(int (ifnz (int 0) (int 5) (int 7)))

(add (int 8) #t)

(add 5 4)

We can assume we won’t see MUPL programs like:

Given this syntax:

Illegal input ASTs may crash the interpreter - this is OK

Check for Correct Semantics

What if the program is a legal AST, but evaluation of it tries to
use the wrong kind of value?

• For example, “add an integer and a function”

• You should detect this and give an error message that is not
in terms of the interpreter implementation

• We need to check that the type of a recursive result is what
we expect

• No need to check if any type is acceptable

6

Evaluating the AST

• eval-exp should return a MUPL value

• MUPL values all evaluate to themselves

• Otherwise we haven’t interpreted far enough

7

(int 7) ; evaluates to (int 7)

(add (int 3) (int 4)) ; evaluates to (int 7)

Macros Review

• Extend language syntax (allow new constructs)

• Written in terms of existing syntax

• Expanded before language is actually interpreted
or compiled

8

MUPL “Macros”

• Interpreting MUPL using Racket as the
metalanguage

• MUPL is represented as Racket structs

• In Racket, these are just data types

• Why not write a Racket function that returns MUPL
ASTs?

9

MUPL “Macros”

10

(++ (int 7))

(define (++ exp) (add (int 1) exp))

If our MUPL Macro is a Racket function

Expands to
(add (int 1) (int 7))

Then the MUPL code

quote

• Syntactically, Racket statements can be thought of
as lists of tokens

• (+ 3 4) is a “plus sign”, a “3”, and a “4”

• quote-ing a parenthesized expression produces a
list of tokens

11

quote Examples

12

(+ 3 4) ; 7

(quote (+ 3 4)) ; '(+ 3 4)

(quote (+ 3 #t)) ; '(+ 3 #t)

(+ 3 #t) ; Error

• You may also see the single quote ‘ character used
as syntactic sugar

quasiquote

• Inserts evaluated tokens into a quote

• Convenient for generating dynamic token lists

• Use unquote to escape a quasiquote back to
evaluated Racket code

• A quasiquote and quote are equivalent unless
we use an unquote operation

13

quasiquote Examples

14

(quasiquote (+ 3 (unquote(+ 2 2)))) ; '(+ 3 4)

(quasiquote

 (string-append

 "I love CSE"

 (number->string

 (unquote (+ 3 338)))))

; '(string-append "I love CSE" (number->string 341))

• You may also see the backtick ` character used as syntactic sugar for
quasiquote

• The comma character , is used as syntactic sugar for unquote

Self Interpretation

• Many languages provide an eval function or
something similar

• Performs interpretation or compilation at runtime
• Needs full language implementation during runtime

• It's useful, but there's usually a better way

• Makes analysis, debugging difficult

15

eval

• Racket's eval operates on lists of tokens

• Like those generated from quote and
quasiquote

• Treat the input data as a program and evaluate it

16

eval examples

17

(define quoted (quote (+ 3 4)))

(eval quoted) ; 7

(define bad-quoted (quote (+ 3 #t)))

(eval bad-quoted) ; Error

(define qquoted (quasiquote (+ 3 (unquote(+ 2 2)))))

(eval qquoted) ; 7

(define big-qquoted

 (quasiquote

 (string-append

 "I love CSE"

 (number->string

 (unquote (+ 3 338))))))

(eval big-qquoted) ; “I love CSE341”

RackUnit

• Unit testing is built into the standard library
• http://docs.racket-lang.org/rackunit/

• Built in test functions to make testing your code
easier
• Test for equality, check-eq?

• Test for True, check-true

• Test for raised exception, check-exn

• and many more
18

http://docs.racket-lang.org/rackunit/
http://docs.racket-lang.org/rackunit/
http://docs.racket-lang.org/rackunit/
http://docs.racket-lang.org/rackunit/

