CSE341 & Section 3

Standard-Library Docs, t-Class Functions, & More




Agenda

1. SML Docs
 Standard Basis

1. First-Class Functions
* Anonymous

e Style Points
 Higher-Order

1. Examples



Standard Basis Documentation

Online Documentation
http://www.standardml.org/Basis/index.html

http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html

Helpful Subset

Top-Level http://www.standardml.org/Basis/top-level-chapter.html|
List http://www.standardml.org/Basis/list.html
ListPair http://www.standardml.org/Basis/list-pair.html

Real http://www.standardml.org/Basis/real.html

String http://www.standardml.org/Basis/string.html



http://www.standardml.org/Basis/index.html
http://www.standardml.org/Basis/index.html
http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html
http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html
http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html
http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html
http://www.standardml.org/Basis/top-level-chapter.html
http://www.standardml.org/Basis/top-level-chapter.html
http://www.standardml.org/Basis/top-level-chapter.html
http://www.standardml.org/Basis/top-level-chapter.html
http://www.standardml.org/Basis/top-level-chapter.html
http://www.standardml.org/Basis/list.html
http://www.standardml.org/Basis/list-pair.html
http://www.standardml.org/Basis/list-pair.html
http://www.standardml.org/Basis/list-pair.html
http://www.standardml.org/Basis/real.html
http://www.standardml.org/Basis/string.html

Anonymous Functions

An Anonymous Function

fn pattern => expression

* An expression that creates a new function with no name.

e Usually used as an argument to a higher-order function.

* Almost equivalent to the following:

let fun name pattern = expression in name end

* The difference is that anonymous functions cannot be recursive!!!



Anonymous Functions

What's the difference between the following two bindings?
val name = fn pattern => expression;

fun name pattern = expression;

* Once again, the difference is recursion.

* However, excluding recursion, a £un binding could just be syntactic sugar for a
val binding and an anonymous function.



Unnecessary Function Wrapping

What's the difference between the following two expressions?

(fn xs => tl xs) VS. tl

STYLE POINTS!

e Other than style, these two expressions result in the exact same thing.
 However, one creates an unnecessary function to wrap t1.
e Thisis very similar to this style issue:

(1f ex then true else false) VS. ex



Higher-Order Functions

* Afunction that returns a function or takes a function as an argument.

Two Canonical Examples

* map : ('a -> 'b) * 'a list -> 'b list
— Applies a function to every element of a list and return a list of the resulting
values.
— Example:map (fn x => x*3, [1,2,3]) === [3,6,9]
e filter : ('a -> bool) * 'a list -> 'a list

— Returns the list of elements from the original list that, when a predicate
function is applied, result in true.

— Example: filter (fn x => x>2, [~5,3,2,5]) === [3,5]

List.map and List.filter are similarly defined in SML but use currying. We'll cover
these later in the course.



Broader Idea

Functions are Awesome!
 SML functions can be passed around like any other value.

* They can be passed as function arguments, returned, and even stored in data
structures or variables.

* Functions like map are very pervasive in functional languages.

— A function like map can even be written for other data structures such as
trees.

(Let’s see some examples!)



Polymorphic Datatypes

datatype 'a tree = Empty
| Node of 'a * 'a
tree * 'a tree

val treeMap = £fn : ('a -> 'b) * 'a tree —> 'b tree

val tree”All = £n : ('a —> bool) * 'a tree —-> bool



