Useful examples

Let’s fix the fact that our only example datatype so far was silly…

- Enumerations, including carrying other data

  ```
  datatype suit = Club | Diamond | Heart | Spade
  datatype card_value = Jack | Queen | King | Ace | Num of int
  ```

- Alternate ways of identifying real-world things/people

  ```
  datatype id = StudentNum of int
               | Name of string
               | (string option)
               | string
  ```

Don’t do this

Unfortunately, bad training and languages that make one-of types inconvenient lead to common bad style where each-of types are used where one-of types are the right tool

- Approach gives up all the benefits of the language enforcing every value is one variant, you don’t forget branches, etc.
- And makes it less clear what you are doing

Expression Trees

A more exciting (?) example of a datatype, using self-reference

```plaintext
datatype exp = Constant of int
              | Negate of exp
              | Add of exp * exp
              | Multiply of exp * exp
```

An expression in ML of type `exp`:

```
Add (Constant (10+9), Negate (Constant 4))
```

How to picture the resulting value in your head:

```
Add
   __________
  |          |
 Constant  Negate
    |        |
     19     Constant
          |
           4
```

Recursion

Not surprising:

Functions over recursive datatypes are usually recursive

```
fun eval e =
  case e of
    Constant i => i
    | Negate e2 => ~ (eval e2)
    | Add(e1,e2) => (eval e1) + (eval e2)
    | Multiply(e1,e2) => (eval e1) * (eval e2)
```
Putting it together

```sml
datatype exp = Constant of int | Negate of exp | Add of exp * exp | Multiply of exp * exp
```

Let’s define `max_constant : exp -> int`

Good example of combining several topics as we program:
- Case expressions
- Local helper functions
- Avoiding repeated recursion
- Simpler solution by using library functions

See the `.sml` file...

Careful definitions

When a language construct is “new and strange,” there is more reason to define the evaluation rules precisely...

... so let’s review datatype bindings and case expressions “so far”
- Extensions to come but won’t invalidate the “so far”

Datatype bindings

```sml
datatype t = C1 of t1 | C2 of t2 | ... | Cn of tn
```

Adds type `t` and constructors `Ci` of type `ti->t`
- `Ci v` is a value, i.e., the result “includes the tag”

Omit “of `t`” for constructors that are just tags, no underlying data
- Such a `Ci` is a value of type `t`

Given an expression of type `t`, use case expressions to:
- See which variant (tag) it has
- Extract underlying data once you know which variant

Recursive datatypes

Datatype bindings can describe recursive structures
- Have seen arithmetic expressions
- Now, linked lists:

```sml
datatype my_int_list = Empty | Cons of int * my_int_list
```

```sml
val x = Cons(4,Cons(23,Cons(2008,Empty)))
```

```sml
fun append_my_list (xs,ys) = 
  case xs of
    Empty => ys 
  | Cons(x, xs') => Cons(x, append_my_list(xs',ys))
```

Options are datatypes

Options are just a predefined datatype binding
- `NONE` and `SOME` are constructors, not just functions
- So use pattern-matching not `isSome` and `valOf`

```sml
fun inc_or_zero intoption = 
  case intoption of
    NONE => 0 
  | SOME i => i+1
```
Lists are datatypes

Do not use `hd`, `tl`, or `null` either
- `[]` and `::` are constructors too
- (strange syntax, particularly infix)

```ml
fun sum_list xs =  
  case xs of  
    [] => 0  
  | x::xs' => x + sum_list xs'

fun append (xs,ys) =  
  case xs of  
    [] => ys  
  | x::xs' => x :: append (xs',ys)
```

Why pattern-matching

- Pattern-matching is better for options and lists for the same reasons as for all datatypes
 - No missing cases, no exceptions for wrong variant, etc.
- We just learned the other way first for pedagogy
 - Do not use `isSome`, `valOf`, `null`, `hd`, `tl` on Homework 2
- So why are `null`, `tl`, etc. predefined?
 - For passing as arguments to other functions (next week)
 - Because sometimes they are convenient
 - But not a big deal: could define them yourself

Excitement ahead…

Learn some deep truths about “what is really going on”
- Using much more syntactic sugar than we realized

- Every val-binding and function-binding uses pattern-matching
- Every function in ML takes exactly one argument

First need to extend our definition of pattern-matching…

Each-of types

So far have used pattern-matching for one of types because we needed a way to access the values

Pattern matching also works for records and tuples:
- The pattern `(x1, ..., xn)` matches the tuple value `(v1, ..., vn)`
- The pattern `{f1=x1, ..., fn=vn}` matches the record value `{f1=v1, ..., fn=vn}`
 (and fields can be reordered)

Example

This is poor style, but based on what I told you so far, the only way to use patterns
- Works but poor style to have one-branch cases

```ml
fun sum_triple triple =  
  case triple of  
    (x, y, z) => x + y + z

fun full_name r =  
  case r of  
    {first=x, middle=y, last=z} =>  
      x ^ " " ^ y ^ " " ^ z
```

Val-binding patterns

- New feature: A val-binding can use a pattern, not just a variable
 - (Turns out variables are just one kind of pattern, so we just told you a half-truth in Lecture 1)

  ```ml
  val p = e
  ```
- Great for getting (all) pieces out of an each-of type
 - Can also get only parts out (not shown here)
- Usually poor style to put a constructor pattern in a val-binding
 - Tests for the one variant and raises an exception if a different one is there (like `hd`, `tl`, and `valOf`
Better example

This is okay style
- Though we will improve it again next
- Semantically identical to one-branch case expressions

```ml
fun sum_triple triple = 
  let val (x, y, z) = triple
  in
  x + y + z
  end

fun full_name r = 
  let val {first=x, middle=y, last=z} = r
  in
  x ^ " " ^ y ^ " " ^ z
  end
```

Function-argument patterns

A function argument can also be a pattern
- Match against the argument in a function call

```ml
fun f p = e
```

Examples (great style!):

```ml
fun sum_triple (x, y, z) = 
  x + y + z

fun full_name {first=x, middle=y, last=z} = 
  x ^ " " ^ y ^ " " ^ z
```

A new way to go

- For Homework 2:
 - Do not use the `#` character
 - Do not need to write down any explicit types

Hmm

A function that takes one triple of type `int*int*int` and returns an `int` that is their sum:

```ml
fun sum_triple (x, y, z) = 
  x + y + z
```

A function that takes three `int` arguments and returns an `int` that is their sum

```ml
fun sum_triple (x, y, z) = 
  x + y + z
```

See the difference? (Me neither.) ☹

The truth about functions

- In ML, every function takes exactly one argument (*)
- What we call multi-argument functions are just functions taking one tuple argument, implemented with a tuple pattern in the function binding
 - Elegant and flexible language design
- Enables cute and useful things you cannot do in Java, e.g.,

```ml
fun rotate_left (x, y, z) = (y, z, x)
fun rotate_right t = rotate_left (rotate_left t)
```

“Zero arguments” is the unit pattern () matching the unit value ()