Function definitions

Functions: the most important building block in the whole course
- Like Java methods, have arguments and result
- But no classes, this, return, etc.

Example function binding:

```
(* Note: correct only if y>=0 *)
fun pow (x : int, y : int) =
  if y=0
  then 1
  else x * pow(x,y-1)
```

Note: The body includes a (recursive) function call: `pow(x,y-1)`

Example, extended

```
fun pow (x : int, y : int) =
  if y=0
  then 1
  else x * pow(x,y-1)
fun cube (x : int) =
  pow (x,3)
val sixtyfour = cube 4
val fortytwo = pow(2,2+2) + pow(4,2) + cube(2) + 2
```

Some gotchas

Three common “gotchas”
- Bad error messages if you mess up function-argument syntax
- The use of * in type syntax is not multiplication
 - Example: `int * int -> int`
 - In expressions, * is multiplication: `x * pow(x,y-1)`
- Cannot refer to later function bindings
 - That’s simply ML’s rule
 - Helper functions must come before their uses
 - Need special construct for mutual recursion (later)

Recursion

- If you’re not yet comfortable with recursion, you will be soon 😊
 - Will use for most functions taking or returning lists
- “Makes sense” because calls to same function solve “simpler” problems
- Recursion more powerful than loops
 - We won’t use a single loop in ML
 - Loops often (not always) obscure simple, elegant solutions

Function bindings: 3 questions

- Syntax: `fun x0 (x1 : t1, ..., xn : tn) = e`
 - (Will generalize in later lecture)
- Evaluation: A function is a value! (No evaluation yet)
 - Adds `x0` to environment so later expressions can call it
 - (Function-call semantics will also allow recursion)
- Type-checking:
 - Adds binding `x0 : (t1 * ... * tn) -> t` if:
 - Can type-check body `e` to have type `t` in the static environment containing:
 - “Enclosing” static environment (earlier bindings)
 - `x1 : t1, ..., xn : tn` (arguments with their types)
 - `x0 : (t1 * ... * tn) -> t` (for recursion)
More on type-checking

- New kind of type: \((t_1 \times \ldots \times t_n) \rightarrow t\)
 - Result type on right
 - The overall type-checking result is to give \(x_0\) this type in rest of program (unlike Java, not for earlier bindings)
 - Arguments can be used only in \(e\) (unsurprising)
- Because evaluation of a call to \(x_0\) will return result of evaluating \(e\), the return type of \(x_0\) is the type of \(e\)
- The type-checker “magically” figures out \(t\) if such a \(t\) exists
- Later lecture: Requires some cleverness due to recursion
- More magic after hw1: Later can omit argument types too

Function Calls

A new kind of expression: 3 questions

<table>
<thead>
<tr>
<th>Syntax: (e_0(e_1, e_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Will generalize later)</td>
</tr>
<tr>
<td>Parentheses optional if there is exactly one argument</td>
</tr>
</tbody>
</table>

Type-checking:

- \(e_0\) has some type \((t_1 \times \ldots \times t_n) \rightarrow t\)
- \(e_1\) has type \(t_1\), \ldots, \(e_n\) has type \(t_n\)
- Then:
- \(e_0(e_1, \ldots, e_n)\) has type \(t\)
Example: \(\text{pow}(x, y-1)\) in previous example has type \(\text{int}\)

Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
- Now ways to build up data with multiple parts
- This is essential
- Java examples: classes with fields, arrays

Now:
- Tuples: fixed “number of pieces” that may have different types
Then:
- Lists: any “number of pieces” that all have the same type
Later:
- Other more general ways to create compound data

Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Build:

- Syntax: \((e_1, e_2)\)
- Evaluation: Evaluate \(e_1\) to \(v_1\) and \(e_2\) to \(v_2\); result is \((v_1, v_2)\)
 - A pair of values is a value
- Type-checking: If \(e_1\) has type \(t_a\) and \(e_2\) has type \(t_b\), then the pair expression has type \(t_a \times t_b\)
 - A new kind of type

Access:

- Syntax: \(\#1 e\) and \(\#2 e\)
- Evaluation: Evaluate \(e\) to a pair of values and return first or second piece
 - Example: If \(e\) is a variable \(x\), then look up \(x\) in environment
- Type-checking: If \(e\) has type \(t_a \times t_b\), then \(\#1 e\) has type \(t_a\)
 and \(\#2 e\) has type \(t_b\)
Examples

Functions can take and return pairs

```haskell
fun swap (pr : int*bool) =
  (#2 pr, #1 pr)
fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
  (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)
fun div_mod (x : int, y : int) =
  (x div y, x mod y)
fun sort_pair (pr : int*int) =
  if (#1 pr) < (#2 pr)
    then pr
    else (#2 pr, #1 pr)
```

Tuples

Actually, you can have *tuples* with more than two parts

- A new feature: a generalization of pairs
 - \((e_1, e_2, \ldots, e_n)\)
 - \(ta * tb * \ldots * tn\)
 - \(#1 e, #2 e, #3 e, \ldots\)

Homework 1 uses triples of type \(\text{int*int*int}\) a lot

Nesting

Pairs and tuples can be nested however you want

- Not a new feature: implied by the syntax and semantics

```haskell
val x1 = (7,(true,9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1)   (* bool *)
val x3 = (#2 x1)      (* bool*int *)
val x4 = ((3,5),((4,8),(0,0)))
 (* (int*int)*((int*int)*(int*int)) *)
```

Lists

- Despite nested tuples, the type of a variable still "commits" to a particular "amount" of data

In contrast, a list:

- Can have any number of elements
- But all list elements have the same type

Need ways to *build* lists and *access* the pieces…

Building Lists

- The empty list is a value:

 \([\]\)

- In general, a list of values is a value; elements separated by commas:

 \([v_1, v_2, \ldots, v_n]\)

- If \(e_1\) evaluates to \(v\) and \(e_2\) evaluates to a list \([v_1, \ldots, v_n]\), then \(e_1::e_2\) evaluates to \([v, \ldots, v_n]\)

 \(e_1::e_2\ (* \text{pronounced "cons" } *)\)

Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

- \(\text{null } e\) evaluates to \(true\) if and only if \(e\) evaluates to \([\]\)

- If \(e\) evaluates to \([v_1, v_2, \ldots, v_n]\) then \(\text{hd } e\) evaluates to \(v_1\)
 - (raise exception if \(e\) evaluates to \([\]\))

- If \(e\) evaluates to \([v_1, v_2, \ldots, v_n]\) then \(\text{tl } e\) evaluates to \([v_2, \ldots, v_n]\)
 - (raise exception if \(e\) evaluates to \([\]\))
 - Notice result is a list
Type-checking list operations

Lots of new types: For any type \(t \), the type \(t \text{ list} \) describes lists where all elements have type \(t \).
- Examples: \(\text{int list} \), \(\text{bool list} \), \(\text{int list list} \), \(\text{(int * int) list} \), \(\text{(int list * int) list} \).
- So \([] \) can have type \(t \text{ list} \) list for any type \(t \).
- SML uses type ‘\(a \) list’ to indicate this (“quote a” or “alpha”).
- For \(e_1::e_2 \) to type-check, we need a \(t \) such that \(e_1 \) has type \(t \) and \(e_2 \) has type \(t \text{ list} \). Then the result type is \(t \text{ list} \).
- \(\text{null : 'a list} \rightarrow \text{bool} \)
- \(\text{hd : 'a list} \rightarrow \ 'a \)
- \(\text{tl : 'a list} \rightarrow \ 'a \text{ list} \)

Recursion again

Functions over lists are usually recursive
- Only way to “get to all the elements”
- What should the answer be for the empty list?
- What should the answer be for a non-empty list?
 - Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
- You create a list out of smaller lists

Lists of pairs

Processing lists of pairs requires no new features. Examples:

```latex
fun sum_pair_list (xs : (int*int) list) =
  if null xs
  then 0
  else #1(hd xs) + #2(hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int*int) list) =
  if null xs
  then []
  else #1(hd xs) :: firsts(tl xs)

fun seconds (xs : (int*int) list) =
  if null xs
  then []
  else #2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 (xs : (int*int) list) =
  (sum_list (firsts xs)) + (sum_list (seconds xs))
```