CSE341: Programming Languages

Lecture 2
Functions, Pairs, Lists

Dan Grossman
Spring 2017
Function definitions

Functions: the most important building block in the whole course
- Like Java methods, have arguments and result
- But no classes, this, return, etc.

Example function binding:

(* Note: correct only if y>=0 *)

```haskell
fun pow (x : int, y : int) =
  if y=0
  then 1
  else x * pow(x,y-1)
```

Note: The body includes a (recursive) function call: \(\text{pow}(x,y-1) \)
Example, extended

fun pow (x : int, y : int) =
 if y=0
 then 1
 else x * pow(x,y-1)

fun cube (x : int) =
 pow (x,3)

val sixtyfour = cube 4

val fortytwo = pow(2,2+2) + pow(4,2) + cube(2) + 2
Some gotchas

Three common “gotchas”

• Bad error messages if you mess up function-argument syntax

• The use of * in type syntax is not multiplication
 – Example: \texttt{int * int -> int}
 – In expressions, * is multiplication: \texttt{x * pow(x,y-1)}

• Cannot refer to later function bindings
 – That’s simply ML’s rule
 – Helper functions must come before their uses
 – Need special construct for \textit{mutual recursion} (later)
Recursion

• If you’re not yet comfortable with recursion, you will be soon 😊
 – Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler” problems

• Recursion more powerful than loops
 – We won’t use a single loop in ML
 – Loops often (not always) obscure simple, elegant solutions
Function bindings: 3 questions

• Syntax:
 \[
 \text{fun } x_0 \ (x_1 : t_1, \ldots, \ x_n : t_n) \ = \ e
 \]
 – (Will generalize in later lecture)

• Evaluation: \textbf{A function is a value!} (No evaluation yet)
 – Adds \(x_0\) to environment so \textit{later} expressions can \textit{call} it
 – (Function-call semantics will also allow recursion)

• Type-checking:
 – Adds binding \(x_0 : (t_1 * \ldots * t_n) \rightarrow t\) if:
 – Can type-check body \(e\) to have type \(t\) in the static environment containing:
 • “Enclosing” static environment (earlier bindings)
 • \(x_1 : t_1, \ldots, x_n : t_n\) (arguments with their types)
 • \(x_0 : (t_1 * \ldots * t_n) \rightarrow t\) (for recursion)
More on type-checking

\[
\text{fun } x0 \ (x1 : t1, \ldots, xn : tn) \ = \ e
\]

- New kind of type: \((t1 \ * \ \ldots \ * \ tn) \to t\)
 - Result type on right
 - The overall type-checking result is to give \(x0\) this type in rest of program (unlike Java, not for earlier bindings)
 - Arguments can be used only in \(e\) (unsurprising)

- Because evaluation of a call to \(x0\) will return result of evaluating \(e\), the return type of \(x0\) is the type of \(e\)

- The type-checker “magically” figures out \(t\) if such a \(t\) exists
 - Later lecture: Requires some cleverness due to recursion
 - More magic after hw1: Later can omit argument types too
Function Calls

A new kind of expression: 3 questions

Syntax: \(e_0(e_1, \ldots, e_n) \)

- (Will generalize later)
- Parentheses optional if there is exactly one argument

Type-checking:

If:
- \(e_0 \) has some type \((t_1 \times \ldots \times t_n) \rightarrow t\)
- \(e_1 \) has type \(t_1 \), \(\ldots \), \(e_n \) has type \(t_n \)

Then:
- \(e_0(e_1, \ldots, e_n) \) has type \(t \)

Example: \(\text{pow}(x, y-1) \) in previous example has type \text{int} \)
Function-calls continued

\[e_0(e_1, \ldots, e_n) \]

Evaluation:

1. (Under current dynamic environment,) evaluate \(e_0 \) to a function
 \[
 \text{fun } x_0 \ (x_1 : t_1, \ldots, x_n : t_n) = e
 \]
 - Since call type-checked, result \textit{will be} a function

2. (Under current dynamic environment,) evaluate arguments to values \(v_1, \ldots, v_n \)

3. Result is evaluation of \(e \) in an environment extended to map
 \(x_1 \) to \(v_1 \), \(x_2 \) to \(v_2 \), \(\ldots \), \(x_n \) to \(v_n \)
 - ("An environment" is actually the environment where the function was defined, and includes \(x_0 \) for recursion)
Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
- Now ways to build up data with multiple parts
- This is essential
- Java examples: classes with fields, arrays

Now:
- *Tuples*: fixed “number of pieces” that may have different types

Then:
- *Lists*: any “number of pieces” that all have the same type

Later:
- Other more general ways to create compound data
Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Build:

• Syntax: (e1, e2)

• Evaluation: Evaluate e1 to v1 and e2 to v2; result is (v1, v2)
 – A pair of values is a value

• Type-checking: If e1 has type ta and e2 has type tb, then the pair expression has type ta * tb
 – A new kind of type
Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Access:

• Syntax: \#1 e and \#2 e

• Evaluation: Evaluate e to a pair of values and return first or second piece
 – Example: If e is a variable x, then look up x in environment

• Type-checking: If e has type ta * tb, then \#1 e has type ta and \#2 e has type tb
Examples

Functions can take and return pairs

fun swap (pr : int*bool) =
 (#2 pr, #1 pr)

fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
 (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y : int) =
 (x div y, x mod y)

fun sort_pair (pr : int*int) =
 if (#1 pr) < (#2 pr)
 then pr
 else (#2 pr, #1 pr)
Tuples

Actually, you can have *tuples* with more than two parts
 – A new feature: a generalization of pairs

• \((e_1, e_2, \ldots, e_n)\)
• \(ta * tb * \ldots * tn\)
• \(#1 e, #2 e, #3 e, \ldots\)

Homework 1 uses triples of type \texttt{int*int*int} a lot
Nesting

Pairs and tuples can be nested however you want

– Not a new feature: implied by the syntax and semantics

```
val x1 = (7,(true,9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1) (* bool *)
val x3 = (#2 x1) (* bool*int *)
val x4 = ((3,5),((4,8),(0,0)))
  (* (int*int)*((int*int)*(int*int)) *)
```
Lists

• Despite nested tuples, the type of a variable still “commits” to a particular “amount” of data

In contrast, a list:
 – Can have any number of elements
 – But all list elements have the same type

Need ways to build lists and access the pieces…
Building Lists

• The empty list is a value:

\[\emptyset \]

• In general, a list of values is a value; elements separated by commas:

\[[v_1, v_2, \ldots, v_n] \]

• If \(e_1 \) evaluates to \(v \) and \(e_2 \) evaluates to a list \([v_1, \ldots, v_n]\), then \(e_1::e_2 \) evaluates to \([v, \ldots, v_n]\)

\(e_1::e_2 \) (* pronounced "cons" *)
Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

- **null e** evaluates to true if and only if e evaluates to []

- If e evaluates to [v1,v2,...,vn] then hd e evaluates to v1
 - (raise exception if e evaluates to [])

- If e evaluates to [v1,v2,...,vn] then tl e evaluates to [v2,...,vn]
 - (raise exception if e evaluates to [])
 - Notice result is a list
Type-checking list operations

Lots of new types: For any type t, the type $t\ list$ describes lists where all elements have type t

 - Examples: $int\ list$ $bool\ list$ $int\ list\ list$
 $\ (int\ *\ int)\ list$ $\ (int\ list\ *\ int)\ list$

• So [] can have type $t\ list\ list$ for any type
 - SML uses type 'a list to indicate this (“quote a” or “alpha”)

• For $e1::e2$ to type-check, we need a t such that $e1$ has type t and $e2$ has type $t\ list$. Then the result type is $t\ list$

• null : 'a list -> bool
• hd : 'a list -> 'a
• tl : 'a list -> 'a list
Example list functions

fun sum_list (xs : int list) =
 if null xs
 then 0
 else hd(xs) + sum_list(tl(xs))

fun countdown (x : int) =
 if x=0
 then []
 else x :: countdown (x-1)

fun append (xs : int list, ys : int list) =
 if null xs
 then ys
 else hd(xs) :: append (tl(xs), ys)
Recursion again

Functions over lists are usually recursive
 – Only way to “get to all the elements”

• What should the answer be for the empty list?
• What should the answer be for a non-empty list?
 – Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
 – You create a list out of smaller lists
Lists of pairs

Processing lists of pairs requires no new features. Examples:

```ml
fun sum_pair_list (xs : (int*int) list) = 
    if null xs 
    then 0 
    else #1(hd xs) + #2(hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int*int) list) = 
    if null xs 
    then [] 
    else #1(hd xs) :: firsts(tl xs)

fun seconds (xs : (int*int) list) = 
    if null xs 
    then [] 
    else #2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 (xs : (int*int) list) = 
    (sum_list (firsts xs)) + (sum_list (seconds xs))
```