Nested patterns

- We can nest patterns as deep as we want
 - Just like we can nest expressions as deep as we want
 - Often avoids hard-to-read, wordy nested case expressions

- So the full meaning of pattern-matching is to compare a pattern against a value for the "same shape" and bind variables to the "right parts"
 - More precise recursive definition coming after examples

Style

- Nested patterns can lead to very elegant, concise code
 - Avoid nested case expressions if nested patterns are simpler and avoid unnecessary branches or let-expressions
 - Example: unzip3 and nondecreasing
 - A common idiom is matching against a tuple of datatypes to compare them
 - Examples: zip3 and multsign

- Wildcards are good style: use them instead of variables when you do not need the data
 - Examples: len and multsign

Examples

- Pattern `a::b::c::d` matches all lists with >= 3 elements
- Pattern `a::b::[]` matches all lists with 3 elements
- Pattern `((a,b),(c,d))::e` matches all non-empty lists of pairs of pairs

Examples

- Pattern `a::b::c::d` matches all lists with >= 3 elements
- Pattern `a::b::[]` matches all lists with 3 elements
- Pattern `((a,b),(c,d))::e` matches all non-empty lists of pairs of pairs
Exceptions

An exception binding introduces a new kind of exception

```ml
exception MyFirstException
exception MySecondException of int * int
```

The `raise` primitive raises (a.k.a. throws) an exception

```ml
raise MyFirstException
raise (MySecondException (7,9))
```

A handle expression can handle (a.k.a. catch) an exception
– If doesn’t match, exception continues to propagate

```ml
e1 handle MyFirstException => e2
e1 handle MySecondException(x,y) => e2
```

Actually…

Exceptions are a lot like datatype constructors...

• Declaring an exception adds a constructor for type `exn`
• Can pass values of `exn` anywhere (e.g., function arguments)
 – Not too common to do this but can be useful
• `handle` can have multiple branches with patterns for type `exn`

Recursion

Should now be comfortable with recursion:

• No harder than using a loop (whatever that is 😊)
• Often much easier than a loop
 – When processing a tree (e.g., evaluate an arithmetic expression)
 – Examples like appending lists
 – Avoids mutation even for local variables
• Now:
 – How to reason about efficiency of recursion
 – The importance of tail recursion
 – Using an accumulator to achieve tail recursion
 – [No new language features here]

Example

```ml
fun fact n = if n=0 then 1 else n*fact(n-1)
val x = fact 3
```

```
fun fact n = 
  let fun aux(n,acc) = 
    if n=0 then acc 
    else aux(n-1,acc*n) 
  in 
    aux(n,1) 
  end 
val x = fact 3
```

Still recursive, more complicated, but the result of recursive calls is the result for the caller (no remaining multiplication)
The call-stacks

<table>
<thead>
<tr>
<th>fact</th>
<th>aux</th>
<th>aux</th>
<th>aux</th>
<th>aux</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

An optimization

It is unnecessary to keep around a stack-frame just so it can get a callee’s result and return it without any further evaluation.

ML recognizes these **tail calls** in the compiler and treats them differently:
- Pop the caller before the call, allowing callee to reuse the same stack space
- (Along with other optimizations,) as efficient as a loop

Reasonable to assume all functional-language implementations do tail-call optimization.

What really happens

```ml
fun fact n = 
  let fun aux(n,acc) = 
    if n=0 
    then acc 
    else aux(n-1,acc*n) 
  in 
  aux(n,1) 
end 
val x = fact 3
```

Moral of tail recursion

- Where reasonably elegant, feasible, and important, rewriting functions to be **tail-recursive** can be much more efficient
 - Tail-recursive: recursive calls are tail-calls
- There is a **methodology** that can often guide this transformation:
 - Create a helper function that takes an **accumulator**
 - Old base case becomes initial accumulator
 - New base case becomes final accumulator

Methodology already seen

```ml
fun fact n = 
  let fun aux(n,acc) = 
    if n=0 
    then acc 
    else aux(n-1,acc*n) 
  in 
  aux(n,1) 
end 
val x = fact 3
```

Another example

```ml
fun sum xs = 
  case xs of 
    [] => 0 
  | x::xs' => x + sum xs'
```

```ml
fun sum xs = 
  let fun aux(xs,acc) = 
    case xs of 
    [] => acc 
    | x::xs' => aux(xs',x+acc) 
  in 
  aux(xs,0) 
end
```
And another

```haskell
fun rev xs =
  case xs of
    [] => []
  | x::xs' => (rev xs') @ [x]
```

```haskell
fun rev xs =
  let fun aux(xs,acc) =
    case xs of
      [] => acc
    | x::xs' => aux(xs',x::acc)
    in aux(xs,[])
  end
```

Actually much better

```haskell
fun rev xs =
  case xs of
    [] => []
  | x::xs' => (rev xs') @ [x]
```

- For `fact` and `sum`, tail-recursion is faster but both ways linear time
- Non-tail recursive `rev` is quadratic because each recursive call uses `append`, which must traverse the first list
 - And \(1+2+\ldots+(\text{length}-1)\) is almost \(\text{length}^2/2\)
 - Moral: beware list-append, especially within outer recursion
- Cons constant-time (and fast), so accumulator version much better

Always tail-recursive?

There are certainly cases where recursive functions cannot be evaluated in a constant amount of space

Most obvious examples are functions that process trees

In these cases, the natural recursive approach is the way to go

- You could get one recursive call to be a tail call, but rarely worth the complication

Also beware the wrath of premature optimization

- Favor clear, concise code
- But do use less space if inputs may be large

What is a tail-call?

The “nothing left for caller to do” intuition usually suffices

- If the result of \(f \ x\) is the “immediate result” for the enclosing function body, then \(f \ x\) is a tail call

But we can define “tail position” recursively

- Then a “tail call” is a function call in “tail position”

Precise definition

A tail call is a function call in tail position

- If an expression is not in tail position, then no subexpressions are
- In \(\text{fun } f \ p = e\), the body \(e\) is in tail position
- If \(\text{if } e_1 \text{ then } e_2 \text{ else } e_3\) is in tail position, then \(e_2\) and \(e_3\) are in tail position (but \(e_1\) is not). (Similar for case-expressions)
- If \(\text{let } b_1 \ldots b_n \text{ in } e \text{ end}\) is in tail position, then \(e\) is in tail position (but no binding expressions are)
- Function-call arguments \(e_1\) \(e_2\) are not in tail position
- …