CSE341: Programming Languages

Lecture 6
Nested Patterns
Exceptions
Tail Recursion

Dan Grossman
Spring 2016
Nested patterns

• We can nest patterns as deep as we want
 – Just like we can nest expressions as deep as we want
 – Often avoids hard-to-read, wordy nested case expressions

• So the full meaning of pattern-matching is to compare a pattern against a value for the “same shape” and bind variables to the “right parts”
 – More precise recursive definition coming after examples
Useful example: zip/unzip 3 lists

fun zip3 lists =
 case lists of
 ([],[],[]) => []
 | (hd1::tl1,hd2::tl2,hd3::tl3) =>
 (hd1,hd2,hd3)::zip3(tl1,tl2,tl3)
 | _ => raise ListLengthMismatch

fun unzip3 triples =
 case triples of
 [] => ([],[],[])
 | (a,b,c)::tl =>
 let val (l1, l2, l3) = unzip3 tl
 in
 (a::l1,b::l2,c::l3)
 end

More examples in .sml files
Style

• Nested patterns can lead to very elegant, concise code
 – Avoid nested case expressions if nested patterns are simpler
 and avoid unnecessary branches or let-expressions
 • Example: unzip3 and nondecreasing
 – A common idiom is matching against a tuple of datatypes to
 compare them
 • Examples: zip3 and multsign

• Wildcards are good style: use them instead of variables when
 you do not need the data
 – Examples: len and multsign
(Most of) the full definition

The semantics for pattern-matching takes a pattern \(p \) and a value \(v \) and decides (1) does it match and (2) if so, what variable bindings are introduced.

Since patterns can nest, the definition is elegantly recursive, with a separate rule for each kind of pattern. Some of the rules:

- If \(p \) is a variable \(x \), the match succeeds and \(x \) is bound to \(v \)
- If \(p \) is \(_ \), the match succeeds and no bindings are introduced
- If \(p \) is \((p_1,\ldots,p_n) \) and \(v \) is \((v_1,\ldots,v_n) \), the match succeeds if and only if \(p_1 \) matches \(v_1 \), \ldots, \(p_n \) matches \(v_n \). The bindings are the union of all bindings from the submatches
- If \(p \) is \(C\ p_1 \), the match succeeds if \(v \) is \(C\ v_1 \) (i.e., the same constructor) and \(p_1 \) matches \(v_1 \). The bindings are the bindings from the submatch.
- … (there are several other similar forms of patterns)
Examples

- Pattern `a::b::c::d` matches all lists with ≥ 3 elements

- Pattern `a::b::c::[]` matches all lists with 3 elements

- Pattern `((a,b),(c,d))::e` matches all non-empty lists of pairs of pairs
Exceptions

An exception binding introduces a new kind of exception

```
exception MyFirstException
exception MySecondException of int * int
```

The `raise` primitive raises (a.k.a. throws) an exception

```
raise MyFirstException
raise (MySecondException (7,9))
```

A handle expression can handle (a.k.a. catch) an exception
- If doesn’t match, exception continues to propagate

```
e1 handle MyFirstException => e2
e1 handle MySecondException(x,y) => e2
```
Actually…

Exceptions are a lot like datatype constructors…

- Declaring an exception adds a constructor for type \texttt{exn}

- Can pass values of \texttt{exn} anywhere (e.g., function arguments)
 - Not too common to do this but can be useful

- \texttt{handle} can have multiple branches with patterns for type \texttt{exn}
Recursion

Should now be comfortable with recursion:

- No harder than using a loop (whatever that is 😊)

- Often much easier than a loop
 - When processing a tree (e.g., evaluate an arithmetic expression)
 - Examples like appending lists
 - Avoids mutation even for local variables

- Now:
 - How to reason about efficiency of recursion
 - The importance of tail recursion
 - Using an accumulator to achieve tail recursion
 - [No new language features here]
Call-stacks

While a program runs, there is a call stack of function calls that have started but not yet returned
 – Calling a function f pushes an instance of f on the stack
 – When a call to f finishes, it is popped from the stack

These stack-frames store information like the value of local variables and “what is left to do” in the function

Due to recursion, multiple stack-frames may be calls to the same function
Example

```ml
fun fact n = if n=0 then 1 else n*fact(n-1)
val x = fact 3
```

```
fact 3 : 3*
fact 2 : 2*
fact 1 : 1*
fact 0 : 1
```
Example Revised

```ml
fun fact n = 
  let fun aux(n,acc) = 
    if n=0 
      then acc 
      else aux(n-1,acc*n) 
  in 
    aux(n,1) 
  end 
val x = fact 3
```

Still recursive, more complicated, but the result of recursive calls is the result for the caller (no remaining multiplication)
The call-stacks

\[
\text{fact 3} \quad \text{fact 3: } _ \quad \text{fact 3: } _ \quad \text{fact 3: } _
\]
\[
\text{aux(3,1)} \quad \text{aux(3,1): } _ \quad \text{aux(3,1): } _ \quad \text{aux(3,1): } _
\]
\[
\text{aux(2,3)} \quad \text{aux(2,3): } _ \quad \text{aux(2,3): } _ \quad \text{aux(2,3): } _
\]
\[
\text{aux(1,6)} \quad \text{aux(1,6): } _ \quad \text{aux(1,6): } _ \quad \text{aux(1,6): } 6
\]
\[
\text{aux(0,6)} \quad \text{aux(0,6): } 6
\]

Etc…
An optimization

It is unnecessary to keep around a stack-frame just so it can get a callee’s result and return it without any further evaluation.

ML recognizes these tail calls in the compiler and treats them differently:
- Pop the caller before the call, allowing callee to reuse the same stack space
- (Along with other optimizations,) as efficient as a loop

Reasonable to assume all functional-language implementations do tail-call optimization
What really happens

```
fun fact n = 
  let fun aux(n,acc) = 
    if n=0
      then acc
    else aux(n-1,acc*n)

    in
    aux(n,1)
  end

val x = fact 3
```
Moral of tail recursion

• Where reasonably elegant, feasible, and important, rewriting functions to be *tail-recursive* can be much more efficient
 – Tail-recursive: recursive calls are tail-calls

• There is a *methodology* that can often guide this transformation:
 – Create a helper function that takes an *accumulator*
 – Old base case becomes initial accumulator
 – New base case becomes final accumulator
Methodology already seen

fun fact n =
 let fun aux(n,acc) =
 if n=0
 then acc
 else aux(n-1,acc*n)
 in
 aux(n,1)
 end
val x = fact 3

fact 3 aux(3,1) aux(2,3) aux(1,6) aux(0,6)
Another example

fun sum xs =
 case xs of
 [] => 0
 | x::xs' => x + sum xs'

fun sum xs =
 let fun aux(xs,acc) =
 case xs of
 [] => acc
 | x::xs' => aux(xs',x+acc)
 in
 aux(xs,0)
 end
And another

fun rev xs =
 case xs of
 [] => []
 | x::xs' => (rev xs') @ [x]

fun rev xs =
 let fun aux(xs,acc) =
 case xs of
 [] => acc
 | x::xs' => aux(xs',x::acc)
 in
 aux(xs,[])
 end
Actually much better

fun rev xs =
 case xs of
 [] => []
 | x::xs' => (rev xs') @ [x]

• For fact and sum, tail-recursion is faster but both ways linear time
• Non-tail recursive rev is quadratic because each recursive call uses append, which must traverse the first list
 – And 1+2+…+(length-1) is almost length*length/2
 – Moral: beware list-append, especially within outer recursion
• Cons constant-time (and fast), so accumulator version much better
Always tail-recursive?

There are certainly cases where recursive functions cannot be evaluated in a constant amount of space.

Most obvious examples are functions that process trees.

In these cases, the natural recursive approach is the way to go:
- You could get one recursive call to be a tail call, but rarely worth the complication.

Also beware the wrath of premature optimization:
- Favor clear, concise code.
- But do use less space if inputs may be large.
What is a tail-call?

The “nothing left for caller to do” intuition usually suffices
- If the result of \(f \ x \) is the “immediate result” for the
 enclosing function body, then \(f \ x \) is a tail call

But we can define “tail position” recursively
- Then a “tail call” is a function call in “tail position”

...
Precise definition

A tail call is a function call in tail position

• If an expression is not in tail position, then no subexpressions are

• In fun f p = e, the body e is in tail position
• If if e1 then e2 else e3 is in tail position, then e2 and e3 are in tail position (but e1 is not). (Similar for case-expressions)
• If let b1 ... bn in e end is in tail position, then e is in tail position (but no binding expressions are)
• Function-call arguments e1 e2 are not in tail position
• ...

Spring 2016

CSE341: Programming Languages