Function definitions

Functions: the most important building block in the whole course
- Like Java methods, have arguments and result
- But no classes, this, return, etc.

Example function binding:

```plaintext
(* Note: correct only if y>=0 *)
fun pow (x : int, y : int) = 
  if y=0 
  then 1
  else x * pow(x,y-1)
```

Note: The body includes a (recursive) function call: `pow(x,y-1)`

Example, extended

```plaintext
fun pow (x : int, y : int) = 
  if y=0 
  then 1
  else x * pow(x,y-1)
fun cube (x : int) = 
pow (x,3)
val sixtyfour = cube 4
val fortytwo = pow(2,2+2) + pow(4,2) + cube(2) + 2
```

Some gotchas

Three common “gotchas”
- Bad error messages if you mess up function-argument syntax
- The use of * in type syntax is not multiplication

 - Example: `int * int -> int`
 - In expressions, * is multiplication: `x * pow(x,y-1)`

- Cannot refer to later function bindings
 - That's simply ML's rule
 - Helper functions must come before their uses
 - Need special construct for mutual recursion (later)

Recursion

- If you’re not yet comfortable with recursion, you will be soon 😊
 - Will use for most functions taking or returning lists

- "Makes sense" because calls to same function solve "simpler" problems

- Recursion more powerful than loops
 - We won’t use a single loop in ML
 - Loops often (not always) obscure simple, elegant solutions

Function bindings: 3 questions

- Syntax: `fun x0 (x1 : t1, ..., xn : tn) = e`
 - (Will generalize in later lecture)

- Evaluation: A function is a value! (No evaluation yet)
 - Adds `x0` to environment so later expressions can call it
 - (Function-call semantics will also allow recursion)

- Type-checking:
 - Adds binding `x0 : (t1 * ... * tn) -> t` if:
 - Can type-check body `e` to have type `t` in the static environment containing:
 - "Enclosing" static environment (earlier bindings)
 - `x1 : t1, ..., xn : tn` (arguments with their types)
 - `x0 : (t1 * ... * tn) -> t` (for recursion)
More on type-checking

- New kind of type: \((t_1 \times \ldots \times t_n) \rightarrow t\)
 - Result type on right
 - The overall type-checking result is to give \(x_0\) this type in rest of program (unlike Java, not for earlier bindings)
 - Arguments can be used only in \(e\) (unsurprising)
- Because evaluation of a call to \(x_0\) will return result of evaluating \(e\), the return type of \(x_0\) is the type of \(e\)
- The type-checker "magically" figures out \(t\) if such a \(t\) exists
- Later lecture: Requires some cleverness due to recursion
- More magic after hw1: Later can omit argument types too

Function Calls

A new kind of expression: 3 questions

Syntax: \(e_0(e_1, \ldots, e_n)\)
 - (Will generalize later)
 - Parentheses optional if there is exactly one argument
Type-checking:
 - If:
 - \(e_0\) has some type \((t_1 \times \ldots \times t_n) \rightarrow t\)
 - \(e_1\) has type \(t_1\)
 - \(\ldots\)
 - \(e_n\) has type \(t_n\)
 - Then:
 - \(e_0(e_1, \ldots, e_n)\) has type \(t\)
Example: \(\text{pow}(x, y-1)\) in previous example has type \(\text{int}\)

Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
 - Now ways to build up data with multiple parts
 - This is essential
 - Java examples: classes with fields, arrays

Now:
 - Tuples: fixed "number of pieces" that may have different types
 - Lists: any "number of pieces" that all have the same type
Later:
 - Other more general ways to create compound data

Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Build:
- Syntax: \((e_1, e_2)\)
- Evaluation: Evaluate \(e_1\) to \(v_1\) and \(e_2\) to \(v_2\); result is \((v_1, v_2)\)
 - A pair of values is a value
- Type-checking: If \(e_1\) has type \(t_a\) and \(e_2\) has type \(t_b\), then the pair expression has type \(t_a \times t_b\)
 - A new kind of type

Access:
- Syntax: \(#1 \ e\) and \(#2 \ e\)
- Evaluation: Evaluate \(\ e\) to a pair of values and return first or second piece
 - Example: If \(\ e\) is a variable \(x\), then look up \(x\) in environment
- Type-checking: If \(\ e\) has type \(t_a \times t_b\), then \(#1 \ e\) has type \(t_a\) and \(#2 \ e\) has type \(t_b\)
Examples

Functions can take and return pairs

```haskell
fun swap (pr : int*bool) =
  (#2 pr, #1 pr)
fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
  (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)
fun div_mod (x : int, y : int) =
  (x div y, x mod y)
fun sort_pair (pr : int*int) =
  if (#1 pr) < (#2 pr)
    then pr
    else (#2 pr, #1 pr)
```

Tuples

 Actually, you can have tuples with more than two parts
 – A new feature: a generalization of pairs
 • (e1,e2,…,en)
 • ta * tb * … * tn
 • #1 e, #2 e, #3 e, …

Homework 1 uses triples of type int*int*int a lot

Nesting

Pairs and tuples can be nested however you want
 – Not a new feature: implied by the syntax and semantics

```haskell
val x1 = (7,(true,9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1)   (* bool *)
val x3 = (#2 x1)      (* bool*int *)
val x4 = ((3,5),((4,8),(0,0)))
          (* (int*int)*((int*int)*(int*int)) *)
```

Lists

• Despite nested tuples, the type of a variable still "commits" to a particular "amount" of data

In contrast, a list:
 – Can have any number of elements
 – But all list elements have the same type

Need ways to build lists and access the pieces...

Building Lists

• The empty list is a value:

 `[]`

• In general, a list of values is a value; elements separated by commas:

 `[v1,v2,…,vn]`

• If e1 evaluates to v and e2 evaluates to a list [v1,…,vn], then e1::e2 evaluates to [v,…,vn]

 `e1::e2 (* pronounced "cons" *)`

Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

• `null e` evaluates to `true` if and only if `e` evaluates to `[]`

• If `e` evaluates to `[v1,v2,…,vn]` then `hd e` evaluates to `v1`
 – (raise exception if `e` evaluates to `[]`)

• If `e` evaluates to `[v1,v2,…,vn]` then `tl e` evaluates to `[v2,…,vn]`
 – (raise exception if `e` evaluates to `[]`)
 – Notice result is a list
Type-checking list operations

Lots of new types: For any type \(t \), the type \(t \: \text{list} \) describes lists where all elements have type \(t \)

- Examples: \(\text{int list} \) \(\text{bool list} \) \(\text{int list list} \) \(\text{(int * int) list} \) \(\text{(int list * int) list} \)

- So \([] \) can have type \(t \: \text{list} \: \text{list} \) for any type
- SML uses type ‘a list to indicate this (“quote a” or “alpha”)
- For \(e1::e2 \) to type-check, we need a \(t \) such that \(e1 \) has type \(t \) and \(e2 \) has type \(t \: \text{list} \). Then the result type is \(t \: \text{list} \)
 - \(\text{null : 'a list -> bool} \)
 - \(\text{hd : 'a list -> 'a} \)
 - \(\text{tl : 'a list -> 'a list} \)

Example list functions

\[
\begin{align*}
\text{fun sum_list (xs : int list) =} & \\
& \text{if null xs then 0 else hd(xs) + sum_list(tl(xs))}
\end{align*}
\]

\[
\begin{align*}
\text{fun countdown (x : int) =} & \\
& \text{if x=0 then [] else x :: countdown (x-1)}
\end{align*}
\]

\[
\begin{align*}
\text{fun append (xs : int list, ys : int list) =} & \\
& \text{if null xs then ys else hd (xs) :: append (tl(xs), ys)}
\end{align*}
\]

Recursion again

Functions over lists are usually recursive
- Only way to “get to all the elements”
- What should the answer be for the empty list?
- What should the answer be for a non-empty list?
 - Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
- You create a list out of smaller lists

Lists of pairs

Processing lists of pairs requires no new features. Examples:

\[
\begin{align*}
\text{fun sum_pair_list (xs : (int*int) list) =} & \\
& \text{if null xs then 0 else \#1(hd xs) + \#2(hd xs) + sum_pair_list(tl xs)}
\end{align*}
\]

\[
\begin{align*}
\text{fun firsts (xs : (int*int) list) =} & \\
& \text{if null xs then [] else \#1(hd xs) :: firsts(tl xs)}
\end{align*}
\]

\[
\begin{align*}
\text{fun seconds (xs : (int*int) list) =} & \\
& \text{if null xs then [] else \#2(hd xs) :: seconds(tl xs)}
\end{align*}
\]

\[
\begin{align*}
\text{fun sum_pair_list2 (xs : (int*int) list) =} & \\
& \text{(sum_list (firsts xs)) + (sum_list (seconds xs))}
\end{align*}
\]