CSE341: Programming Languages

Lecture 2
Functions, Pairs, Lists

Dan Grossman
Spring 2016
Function definitions

Functions: the most important building block in the whole course
- Like Java methods, have arguments and result
- But no classes, `this`, `return`, etc.

Example *function binding*:

```haskell
(* Note: correct only if y>=0 *)

fun pow (x : int, y : int) =
  if y=0
  then 1
  else x * pow(x,y-1)
```

Note: The *body* includes a (recursive) *function call*: `pow(x,y-1)`
Example, extended

```haskell
fun pow (x : int, y : int) = 
  if y=0 
  then 1 
  else x * pow(x,y-1)

fun cube (x : int) = 
  pow (x,3)

val sixtyfour = cube 4

val fortytwo = pow(2,2+2) + pow(4,2) + cube(2) + 2
```
Some gotchas

Three common “gotchas”

• Bad error messages if you mess up function-argument syntax

• The use of * in type syntax is not multiplication
 – Example: int * int -> int
 – In expressions, * is multiplication: x * pow(x, y-1)

• Cannot refer to later function bindings
 – That’s simply ML’s rule
 – Helper functions must come before their uses
 – Need special construct for mutual recursion (later)
Recursion

• If you’re not yet comfortable with recursion, you will be soon 😊
 – Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler” problems

• Recursion more powerful than loops
 – We won’t use a single loop in ML
 – Loops often (not always) obscure simple, elegant solutions
Function bindings: 3 questions

• Syntax: \[
\text{fun } x_0 \ (x_1 : t_1, \ldots, \ x_n : t_n) \ = \ e
\]
 – (Will generalize in later lecture)

• Evaluation: \textbf{A function is a value!} (No evaluation yet)
 – Adds \(x_0\) to environment so \textit{later} expressions can \textit{call} it
 – (Function-call semantics will also allow recursion)

• Type-checking:
 – Adds binding \(x_0 : (t_1 * \ldots * t_n) \to t\) if:
 – Can type-check body \(e\) to have type \(t\) in the static environment containing:
 • “Enclosing” static environment (earlier bindings)
 • \(x_1 : t_1, \ldots, x_n : t_n\) (arguments with their types)
 • \(x_0 : (t_1 * \ldots * t_n) \to t\) (for recursion)
More on type-checking

fun x0 (x1 : t1, ... , xn : tn) = e

- New kind of type: (t1 * ... * tn) -> t
 - Result type on right
 - The overall type-checking result is to give x0 this type in rest of program (unlike Java, not for earlier bindings)
 - Arguments can be used only in e (unsurprising)

- Because evaluation of a call to x0 will return result of evaluating e, the return type of x0 is the type of e

- The type-checker "magically" figures out t if such a t exists
 - Later lecture: Requires some cleverness due to recursion
 - More magic after hw1: Later can omit argument types too
Function Calls

A new kind of expression: 3 questions

Syntax: \[e_0 \ (e_1, \ldots, e_n) \]

- (Will generalize later)
- Parentheses optional if there is exactly one argument

Type-checking:

If:

- \(e_0 \) has some type \((t_1 \times \ldots \times t_n) \rightarrow t \)
- \(e_1 \) has type \(t_1 \), \ldots, \(e_n \) has type \(t_n \)

Then:

- \(e_0 (e_1, \ldots, e_n) \) has type \(t \)

Example: \(\text{pow}(x, y-1) \) in previous example has type \(\text{int} \)
Function-calls continued

\[e_0(e_1, \ldots, e_n) \]

Evaluation:

1. (Under current dynamic environment,) evaluate \(e_0 \) to a function \(\text{fun } x_0 \ (x_1 : t_1, \ \ldots \ , \ x_n : t_n) = e \)
 - Since call type-checked, result will be a function

2. (Under current dynamic environment,) evaluate arguments to values \(v_1, \ \ldots, \ v_n \)

3. Result is evaluation of \(e \) in an environment extended to map \(x_1 \) to \(v_1 \), \(\ldots \), \(x_n \) to \(v_n \)
 - (“An environment” is actually the environment where the function was defined, and includes \(x_0 \) for recursion)
Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
 – Now ways to build up data with multiple parts
 – This is essential
 – Java examples: classes with fields, arrays

Now:
 – *Tuples*: fixed “number of pieces” that may have different types

Then:
 – *Lists*: any “number of pieces” that all have the same type

Later:
 – Other more general ways to create compound data
Pairs (2-tuples)

Need a way to \textit{build} pairs and a way to \textit{access} the pieces

\textit{Build:}

\begin{itemize}
\item Syntax: \((e_1,e_2)\)
\item Evaluation: Evaluate \(e_1\) to \(v_1\) and \(e_2\) to \(v_2\); result is \((v_1,v_2)\)
 \begin{itemize}
 \item A pair of values is a value
 \end{itemize}
\item Type-checking: If \(e_1\) has type \(t_a\) and \(e_2\) has type \(t_b\), then the pair expression has type \(t_a \ast t_b\)
 \begin{itemize}
 \item A new kind of type
 \end{itemize}
\end{itemize}
Pairs (2-tuples)

Need a way to \textit{build} pairs and a way to \textit{access} the pieces

Access:

- Syntax: $\#1 \ e$ and $\#2 \ e$

- Evaluation: Evaluate e to a pair of values and return first or second piece
 - Example: If e is a variable x, then look up x in environment

- Type-checking: If e has type $ta \ast tb$, then $\#1 \ e$ has type ta and $\#2 \ e$ has type tb
Examples

Functions can take and return pairs

``` stata
fun swap (pr : int*bool) =
    (#2 pr, #1 pr)

fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
    (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y : int) =
    (x div y, x mod y)

fun sort_pair (pr : int*int) =
    if (#1 pr) < (#2 pr)
        then pr
    else (#2 pr, #1 pr)
```
Tuples

Actually, you can have *tuples* with more than two parts
- A new feature: a generalization of pairs

- $(e_1,e_2,...,e_n)$
- $t_a * t_b * ... * t_n$
- $#1 \ e, \ #2 \ e, \ #3 \ e, \ ...$

Homework 1 uses triples of type `int*int*int` a lot
Nesting

Pairs and tuples can be nested however you want
– Not a new feature: implied by the syntax and semantics

```plaintext
val x1 = (7,(true,9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1)   (* bool *)
val x3 = (#2 x1)      (* bool*int *)
val x4 = ((3,5),((4,8),(0,0)))
  (* (int*int)*((int*int)*(int*int)) *)
```
Lists

- Despite nested tuples, the type of a variable still “commits” to a particular “amount” of data

In contrast, a list:
 - Can have any number of elements
 - But all list elements have the same type

Need ways to build lists and access the pieces…
Building Lists

• The empty list is a value:

[]

• In general, a list of values is a value; elements separated by commas:

[v1, v2, ..., vn]

• If \(e_1 \) evaluates to \(v \) and \(e_2 \) evaluates to a list \([v_1, ..., v_n]\), then \(e_1::e_2 \) evaluates to \([v, ..., v_n]\)

\(e_1::e_2 \) (* pronounced “cons” *)
Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

- **null e** evaluates to true if and only if e evaluates to []

- If e evaluates to [v1,v2,…,vn] then **hd e** evaluates to v1
 - (raise exception if e evaluates to [])

- If e evaluates to [v1,v2,…,vn] then **tl e** evaluates to [v2,…,vn]
 - (raise exception if e evaluates to [])
 - Notice result is a list
Type-checking list operations

Lots of new types: For any type t, the type $t\ list$ describes lists where all elements have type t

- Examples: $int \ list$, $bool \ list$, $int \ list \ list$
 $(int \ * \ int) \ list$, $(int\ list \ * \ int) \ list$

- So $[]$ can have type $t\ list\ list$ for any type
 - SML uses type $'a\ list$ to indicate this (“quote a” or “alpha”)
- For $e_1::e_2$ to type-check, we need a t such that e_1 has type t and e_2 has type $t\ list$. Then the result type is $t\ list$
- $null : 'a\ list \rightarrow bool$
- $hd : 'a\ list \rightarrow 'a$
- $tl : 'a\ list \rightarrow 'a\ list$
Example list functions

fun sum_list (xs : int list) =
 if null xs
 then 0
 else hd(xs) + sum_list(tl(xs))

fun countdown (x : int) =
 if x=0
 then []
 else x :: countdown(x-1)

fun append (xs : int list, ys : int list) =
 if null xs
 then ys
 else hd (xs) :: append (tl(xs), ys)
Recursion again

Functions over lists are usually recursive
 – Only way to “get to all the elements”

• What should the answer be for the empty list?
• What should the answer be for a non-empty list?
 – Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
 – You create a list out of smaller lists
Lists of pairs

Processing lists of pairs requires no new features. Examples:

```plaintext
fun sum_pair_list (xs : (int*int) list) =  
  if null xs  
  then 0  
  else #1(hd xs) +#2(hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int*int) list) =  
  if null xs  
  then []  
  else #1(hd xs) :: firsts(tl xs)

fun seconds (xs : (int*int) list) =  
  if null xs  
  then []  
  else #2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 (xs : (int*int) list) =  
  (sum_list (firsts xs)) + (sum_list (seconds xs))
```