CSE341: Programming Languages

Lecture 22
OOP vs. Functional Decomposition;
Adding Operators & Variants;
Double-Dispatch

Dan Grossman
Spring 2016

Breaking things down

* In functional (and procedural) programming, break programs
down into functions that perform some operation

* In object-oriented programming, break programs down into
classes that give behavior to some kind of data

This lecture:

— These two forms of decomposition are so exactly opposite
that they are two ways of looking at the same “matrix”

— Which form is “better” is somewhat personal taste, but also
depends on how you expect to change/extend software

— For some operations over two (multiple) arguments,
functions and pattern-matching are straightforward, but with
OOP we can do it with double dispatch (multiple dispatch)

Spring 2016 CSE341: Programming Languages

The expression example

Well-known and compelling example of a common pattern:
— Expressions for a small language
— Different variants of expressions: ints, additions, negations, ...
— Different operations to perform: eval, toString, hasZero, ...

Leads to a matrix (2D-grid) of variants and operations

— Implementation will involve deciding what “should happen” for
each entry in the grid regardless of the PL

eval | toString | hasZero

Int
Add
Negate

Spring 2016 CSE341: Programming Languages 3

Standard approach in ML

eval | toString | hasZero

Int
Add
Negate

« Define a datatype, with one constructor for each variant
— (No need to indicate datatypes if dynamically typed)
« “Fill out the grid” via one function per column
— Each function has one branch for each column entry

— Can combine cases (e.g., with wildcard patterns) if multiple
entries in column are the same

[See the ML code]

Spring 2016 CSE341: Programming Languages

Standard approach in OOP

eval | toString | hasZero

Int
Add
Negate

« Define a class, with one abstract method for each operation
— (No need to indicate abstract methods if dynamically typed)
» Define a subclass for each variant

« So fill out the grid” via one class per row with one method
Implementation for each grid position

— Can use a method in the superclass if there is a default for
multiple entries in a column

[See the Ruby and Java code]
Spring 2016 CSE341: Programming Languages

A big course punchline

eval | toString | hasZero

Int
Add

Negate

 FP and OOP often doing the same thing in exact opposite way
— Organize the program “by rows” or “by columns”

« Which is “most natural” may depend on what you are doing (e.g., an
interpreter vs. a GUI) or personal taste

Code layout is important, but there is no perfect way since software
has many dimensions of structure

— Tools, IDEs can help with multiple “views” (e.g., rows / columns)

Spring 2016 CSE341: Programming Languages 6

Extensibility

eval | toString | hasZero | noNegConstants

Int
Add
Negate
Mult

« For implementing our grid so far, SML / Racket style usually by
column and Ruby / Java style usually by row

« But beyond just style, this decision affects what (unexpected?)
software extensions need not change old code

« Functions [see ML code]:
— Easy to add a new operation, e.g., noNegConstants
— Adding a new variant, e.g., Mult requires modifying old
functions, but ML type-checker gives a to-do list if original

code avoided wildcard patterns
Spring 2016 CSE341: Programming Languages

Extensibility

eval | toString | hasZero | noNegConstants

Int
Add
Negate
Mult

« For implementing our grid so far, SML / Racket style usually by
column and Ruby / Java style usually by row

« But beyond just style, this decision affects what (unexpected?)
software extensions are easy and/or do not change old code

« Objects [see Ruby code]:
— Easy to add a new variant, e.g., Mult
— Adding a new operation, e.g., noNegConstants requires
modifying old classes, but Java type-checker gives a to-do

list if original code avoided default methods
Spring 2016 CSE341: Programming Languages

The other way Is possible

« Functions allow new operations and objects allow new variants
without modifying existing code even if they didn’t plan for it

— Natural result of the decomposition

Optional:

« Functions can support new variants somewhat awkwardly “if they
plan ahead”

— Not explained here: Can use type constructors to make
datatypes extensible and have operations take function
arguments to give results for the extensions

« Objects can support new operations somewhat awkwardly “if they
plan ahead”

— Not explained here: The popular Visitor Pattern uses the
double-dispatch pattern to allow new operations “on the side”

Spring 2016 CSE341: Programming Languages 9

Thoughts on Extensibility

« Making software extensible is valuable and hard
— If you know you want new operations, use FP
— If you know you want new variants, use OOP
— If both? Languages like Scala try; it's a hard problem
— Reality: The future is often hard to predict!

« Extensibility is a double-edged sword
— Code more reusable without being changed later

— But makes original code more difficult to reason about locally
or change later (could break extensions)

— Often language mechanisms to make code less extensible
(ML modules hide datatypes; Java’'s £inal prevents

subclassing/overriding)

Spring 2016 CSE341: Programming Languages 10

Binary operations

eval | toString | hasZero

Int
Add
Negate

« Situation is more complicated if an operation is defined over
multiple arguments that can have different variants

— Can arise in original program or after extension

* Function decomposition deals with this much more simply...

Spring 2016 CSE341: Programming Languages

Example

To show the issue:
— Include variants String and Rational
— (Re)define Add to work on any pair of Int, String, Rational
« Concatenation if either argument a String, else math

Now just defining the addition operation is a different 2D grid:

Int String |Rational

Int

String

Rational

Spring 2016 CSE341: Programming Languages 12

ML Approach

Addition is different for most Int, String, Rational combinations
— Run-time error for non-value expressions

Natural approach: pattern-match on the pair of values
— For commutative possibilities, can re-call with (v2,v1)

fun add values (vl,v2) =
case (vl,v2) of
(Int i, Int j) => Int (i+])
| (Int i, String s) => String (Int.toString i % s)
| (Int i, Rational(j,k)) => Rational (i*k+j,k)
| (Rational , Int) => add values (v2,vl)
| (* 5 more cases (3*3 total) : see the code ¥*)

fun eval e
case e of

| Add(el,e2) => add values (eval el, eval e2)
Spring 2016 CSE341: Programming Languages 13

Example

To show the issue:
— Include variants String and Rational
— (Re)define Add to work on any pair of Int, String, Rational
« Concatenation if either argument a String, else math

Now just defining the addition operation is a different 2D grid:

Int String |Rational

Int

String

Rational

Worked just fine with functional decomposition -- what about OOP...

Spring 2016 CSE341: Programming Languages 14

What about OOP?

Starts promising:
— Use OOP to call method add values to one value with
other value as result
class Add

aef eval

el.eval.add values e2.eval
end
end

Classes Int, MyString, MyRational then all implement

— Each handling 3 of the 9 cases: “add self to argument”
class Int

def add wvalues v
.. # what goes here?
end
end

Spring 2016 CSE341: Programming Languages 15

First try

» This approach is common, but is “not as OOP”

— So do not do it on your homework
class Int
def add values v
if v.is a? Int
Int.new(v.i + 1)
elsif v.is a? MyRational
MyRational .new(v.i+v.J*i,v.])
else
MyString.new(v.s + i.to_ s)
end
end

* A “hybrid” style where we used dynamic dispatch on 1 argument
and then switched to Racket-style type tests for other argument

— Definitely not “full OOP”

Spring 2016 CSE341: Programming Languages 16

Another way...

- add values methodin Int needs “what kind of thing” v has
— Same problem in MyRational and MyString

 In OOP, “always” solve this by calling a method on v instead!
 But now we need to “tell” v “what kind of thing” self is
— We know that!

— “Tell” v by calling different methods on v, passing self

« Use a “programming trick” (?) called double-dispatch...

Spring 2016 CSE341: Programming Languages 17

Double-dispatch “trick”

« Int,MyString, and MyRational each define all of addInt,
addstring, and addRational

— For example, String's addInt is for adding concatenating an
integer argument to the string in self

— 9 total methods, one for each case of addition

- Add’s eval method calls el.eval.add values e2.eval,
which dispatches to add wvalues in Int, String, or Rational

- Int's add values: v.addInt self
— MyString's add values: v.addString self
— MyRational’'s add values: v.addRational self
So add_values performs “2nd dispatch” to the correct case of 9!

[Definitely see the code]

Spring 2016 CSE341: Programming Languages 18

Why showing you this

Honestly, partly to belittle full commitment to OOP

To understand dynamic dispatch via a sophisticated idiom

Because required for the homework

To contrast with multimethods (optional)

Spring 2016 CSE341: Programming Languages 19

Works Iin Java too

» In a statically typed language, double-dispatch works fine
— Just need all the dispatch methods in the type

abstract class Value extends Exp ({

abstract Value
abstract Value
abstract Value
abstract Value

}

add values (Value other);
addInt (Int other);
addString(Strng other) ;
addRational (Rational other) ;

class Int extends Value { .. }
class Strng extends Value { .. }
class Rational extends Value { .. }

[See Java code]

Spring 2016 CSE341: Programming Languages

20

Being Fair

Belittling OOP style for requiring the manual trick of double
dispatch is somewhat unfair...

What would work better:
« Int,MyString, and MyRational each define three methods
all named add_values

— One add_values takes an Int, one a MyString, one a
MyRational

— So 9 total methods named add values

- el.eval.add values e2.eval picks the right one of
the 9 at run-time using the classes of the two arguments

« Such a semantics is called multimethods or multiple dispatch

Spring 2016 CSE341: Programming Languages 21

Multimethods

General idea:
— Allow multiple methods with same name
— Indicate which ones take instances of which classes

— Use dynamic dispatch on arguments in addition to receiver
to pick which method is called

If dynamic dispatch is essence of OOP, this is more OOP
— No need for awkward manual multiple-dispatch

Downside: Interaction with subclassing can produce situations
where there is “no clear winner” for which method to call

Spring 2016 CSE341: Programming Languages 22

Ruby: Why not?

Multimethods a bad fit (?) for Ruby because:

* Ruby places no restrictions on what is passed to a method

* Ruby never allows methods with the same name
— Same name means overriding/replacing

Spring 2016 CSE341: Programming Languages

23

Java/C#/C++: Why not?

* Yes, Java/C#/C++ allow multiple methods with the same name

* No, these language do not have multimethods
— They have static overloading
— Uses static types of arguments to choose the method
« But of course run-time class of receiver [odd hybrid?]

— No help in our example, so still code up double-dispatch
manually

« Actually, C# 4.0 has a way to get effect of multimethods

 Many other language have multimethods (e.g., Clojure)
— They are not a new idea

Spring 2016 CSE341: Programming Languages 24

