
CSE341: Programming Languages

Lecture 22

OOP vs. Functional Decomposition;

Adding Operators & Variants;

Double-Dispatch

Dan Grossman

Spring 2016

Breaking things down

• In functional (and procedural) programming, break programs

down into functions that perform some operation

• In object-oriented programming, break programs down into

classes that give behavior to some kind of data

This lecture:

– These two forms of decomposition are so exactly opposite

that they are two ways of looking at the same “matrix”

– Which form is “better” is somewhat personal taste, but also

depends on how you expect to change/extend software

– For some operations over two (multiple) arguments,

functions and pattern-matching are straightforward, but with

OOP we can do it with double dispatch (multiple dispatch)

Spring 2016 2 CSE341: Programming Languages

The expression example

Well-known and compelling example of a common pattern:

– Expressions for a small language

– Different variants of expressions: ints, additions, negations, …

– Different operations to perform: eval, toString, hasZero, …

Leads to a matrix (2D-grid) of variants and operations

– Implementation will involve deciding what “should happen” for

each entry in the grid regardless of the PL

Spring 2016 3 CSE341: Programming Languages

eval toString hasZero …

Int

Add

Negate

…

Standard approach in ML

• Define a datatype, with one constructor for each variant

– (No need to indicate datatypes if dynamically typed)

• “Fill out the grid” via one function per column

– Each function has one branch for each column entry

– Can combine cases (e.g., with wildcard patterns) if multiple

entries in column are the same

[See the ML code]

Spring 2016 4 CSE341: Programming Languages

eval toString hasZero …

Int

Add

Negate

…

Standard approach in OOP

• Define a class, with one abstract method for each operation

– (No need to indicate abstract methods if dynamically typed)

• Define a subclass for each variant

• So “fill out the grid” via one class per row with one method

implementation for each grid position

– Can use a method in the superclass if there is a default for

multiple entries in a column

[See the Ruby and Java code]

Spring 2016 5 CSE341: Programming Languages

eval toString hasZero …

Int

Add

Negate

…

A big course punchline

• FP and OOP often doing the same thing in exact opposite way

– Organize the program “by rows” or “by columns”

• Which is “most natural” may depend on what you are doing (e.g., an

interpreter vs. a GUI) or personal taste

• Code layout is important, but there is no perfect way since software

has many dimensions of structure

– Tools, IDEs can help with multiple “views” (e.g., rows / columns)

Spring 2016 6 CSE341: Programming Languages

eval toString hasZero …

Int

Add

Negate

…

Extensibility

• For implementing our grid so far, SML / Racket style usually by

column and Ruby / Java style usually by row

• But beyond just style, this decision affects what (unexpected?)

software extensions need not change old code

• Functions [see ML code]:

– Easy to add a new operation, e.g., noNegConstants

– Adding a new variant, e.g., Mult requires modifying old

functions, but ML type-checker gives a to-do list if original

code avoided wildcard patterns

Spring 2016 7 CSE341: Programming Languages

eval toString hasZero noNegConstants

Int

Add

Negate

Mult

• For implementing our grid so far, SML / Racket style usually by

column and Ruby / Java style usually by row

• But beyond just style, this decision affects what (unexpected?)

software extensions are easy and/or do not change old code

• Objects [see Ruby code]:

– Easy to add a new variant, e.g., Mult

– Adding a new operation, e.g., noNegConstants requires

modifying old classes, but Java type-checker gives a to-do

list if original code avoided default methods

Spring 2016 8 CSE341: Programming Languages

eval toString hasZero noNegConstants

Int

Add

Negate

Mult

Extensibility

The other way is possible

• Functions allow new operations and objects allow new variants

without modifying existing code even if they didn’t plan for it

– Natural result of the decomposition

Optional:

• Functions can support new variants somewhat awkwardly “if they

plan ahead”

– Not explained here: Can use type constructors to make

datatypes extensible and have operations take function

arguments to give results for the extensions

• Objects can support new operations somewhat awkwardly “if they

plan ahead”

– Not explained here: The popular Visitor Pattern uses the

double-dispatch pattern to allow new operations “on the side”

 Spring 2016 9 CSE341: Programming Languages

Thoughts on Extensibility

• Making software extensible is valuable and hard

– If you know you want new operations, use FP

– If you know you want new variants, use OOP

– If both? Languages like Scala try; it’s a hard problem

– Reality: The future is often hard to predict!

• Extensibility is a double-edged sword

– Code more reusable without being changed later

– But makes original code more difficult to reason about locally

or change later (could break extensions)

– Often language mechanisms to make code less extensible
(ML modules hide datatypes; Java’s final prevents

subclassing/overriding)

Spring 2016 10 CSE341: Programming Languages

Binary operations

• Situation is more complicated if an operation is defined over

multiple arguments that can have different variants

– Can arise in original program or after extension

• Function decomposition deals with this much more simply…

Spring 2016 11 CSE341: Programming Languages

eval toString hasZero …

Int

Add

Negate

…

Example

To show the issue:

– Include variants String and Rational

– (Re)define Add to work on any pair of Int, String, Rational

• Concatenation if either argument a String, else math

Now just defining the addition operation is a different 2D grid:

Spring 2016 12 CSE341: Programming Languages

Int String Rational

Int

String

Rational

ML Approach

Addition is different for most Int, String, Rational combinations

– Run-time error for non-value expressions

Natural approach: pattern-match on the pair of values

– For commutative possibilities, can re-call with (v2,v1)

Spring 2016 13 CSE341: Programming Languages

fun add_values (v1,v2) =

 case (v1,v2) of

 (Int i, Int j) => Int (i+j)

 | (Int i, String s) => String (Int.toString i ^ s)

 | (Int i, Rational(j,k)) => Rational (i*k+j,k)

 | (Rational _, Int _) => add_values (v2,v1)

 | … (* 5 more cases (3*3 total): see the code *)

fun eval e =

 case e of

 …

 | Add(e1,e2) => add_values (eval e1, eval e2)

Example

To show the issue:

– Include variants String and Rational

– (Re)define Add to work on any pair of Int, String, Rational

• Concatenation if either argument a String, else math

Now just defining the addition operation is a different 2D grid:

Worked just fine with functional decomposition -- what about OOP…

Spring 2016 14 CSE341: Programming Languages

Int String Rational

Int

String

Rational

What about OOP?

Starts promising:

– Use OOP to call method add_values to one value with

other value as result

Spring 2016 15 CSE341: Programming Languages

class Add
 …
 def eval
 e1.eval.add_values e2.eval
 end
end

Classes Int, MyString, MyRational then all implement

– Each handling 3 of the 9 cases: “add self to argument”

class Int
 …
 def add_values v
 … # what goes here?
 end
end

First try

• This approach is common, but is “not as OOP”

– So do not do it on your homework

• A “hybrid” style where we used dynamic dispatch on 1 argument

and then switched to Racket-style type tests for other argument

– Definitely not “full OOP”

Spring 2016 16 CSE341: Programming Languages

class Int

 def add_values v

 if v.is_a? Int

 Int.new(v.i + i)

 elsif v.is_a? MyRational

 MyRational.new(v.i+v.j*i,v.j)

 else

 MyString.new(v.s + i.to_s)

 end

end

Another way…

• add_values method in Int needs “what kind of thing” v has

– Same problem in MyRational and MyString

• In OOP, “always” solve this by calling a method on v instead!

• But now we need to “tell” v “what kind of thing” self is

– We know that!

– “Tell” v by calling different methods on v, passing self

• Use a “programming trick” (?) called double-dispatch…

Spring 2016 17 CSE341: Programming Languages

Double-dispatch “trick”

• Int, MyString, and MyRational each define all of addInt,

addString, and addRational

– For example, String’s addInt is for adding concatenating an

integer argument to the string in self

– 9 total methods, one for each case of addition

• Add’s eval method calls e1.eval.add_values e2.eval,

which dispatches to add_values in Int, String, or Rational

– Int’s add_values: v.addInt self

– MyString’s add_values: v.addString self

– MyRational’s add_values: v.addRational self

So add_values performs “2nd dispatch” to the correct case of 9!

[Definitely see the code]

Spring 2016 18 CSE341: Programming Languages

Why showing you this

• Honestly, partly to belittle full commitment to OOP

• To understand dynamic dispatch via a sophisticated idiom

• Because required for the homework

• To contrast with multimethods (optional)

Spring 2016 19 CSE341: Programming Languages

Works in Java too

• In a statically typed language, double-dispatch works fine

– Just need all the dispatch methods in the type

[See Java code]

Spring 2016 20 CSE341: Programming Languages

abstract class Value extends Exp {

 abstract Value add_values(Value other);

 abstract Value addInt(Int other);

 abstract Value addString(Strng other);

 abstract Value addRational(Rational other);

}

class Int extends Value { … }

class Strng extends Value { … }

class Rational extends Value { … }

Being Fair

Belittling OOP style for requiring the manual trick of double

dispatch is somewhat unfair…

What would work better:

• Int, MyString, and MyRational each define three methods

all named add_values

– One add_values takes an Int, one a MyString, one a

MyRational

– So 9 total methods named add_values

– e1.eval.add_values e2.eval picks the right one of

the 9 at run-time using the classes of the two arguments

• Such a semantics is called multimethods or multiple dispatch

Spring 2016 21 CSE341: Programming Languages

Multimethods

General idea:

– Allow multiple methods with same name

– Indicate which ones take instances of which classes

– Use dynamic dispatch on arguments in addition to receiver

to pick which method is called

If dynamic dispatch is essence of OOP, this is more OOP

– No need for awkward manual multiple-dispatch

Downside: Interaction with subclassing can produce situations

where there is “no clear winner” for which method to call

Spring 2016 22 CSE341: Programming Languages

Ruby: Why not?

Multimethods a bad fit (?) for Ruby because:

• Ruby places no restrictions on what is passed to a method

• Ruby never allows methods with the same name

– Same name means overriding/replacing

Spring 2016 23 CSE341: Programming Languages

Java/C#/C++: Why not?

• Yes, Java/C#/C++ allow multiple methods with the same name

• No, these language do not have multimethods

– They have static overloading

– Uses static types of arguments to choose the method

• But of course run-time class of receiver [odd hybrid?]

– No help in our example, so still code up double-dispatch

manually

• Actually, C# 4.0 has a way to get effect of multimethods

• Many other language have multimethods (e.g., Clojure)

– They are not a new idea

Spring 2016 24 CSE341: Programming Languages

