
CSE341: Programming Languages

Lecture 20

Arrays and Such,

Blocks and Procs,

Inheritance and Overriding

Dan Grossman

Spring 2016

This lecture

Three mostly separate topics

• Flexible arrays, ranges, and hashes [actually covered in section]

• Ruby’s approach to almost-closures (blocks) and closures (Procs)

– [partially discussed in section as well]

– Convenient to use; unusual approach

– Used throughout large standard library

• Explicit loops rare

• Instead of a loop, go find a useful iterator

• Subclasses, inheritance, and overriding

– The essence of OOP, now in a more dynamic language

Spring 2016 2 CSE341: Programming Languages

Ruby Arrays

• Lots of special syntax and many provided methods for the
Array class

• Can hold any number of other objects, indexed by number

– Get via a[i]

– Set via a[i] = e

• Compared to arrays in many other languages

– More flexible and dynamic

– Fewer operations are errors

– Less efficient

• “The standard collection” (like lists were in ML and Racket)

Spring 2016 3 CSE341: Programming Languages

Using Arrays

• See many examples, some demonstrated here

• Consult the documentation/tutorials

– If seems sensible and general, probably a method for it

• Arrays make good tuples, lists, stacks, queues, sets, …

• Iterating over arrays typically done with methods taking blocks

– Next topic…

Spring 2016 4 CSE341: Programming Languages

Blocks

Blocks are probably Ruby's strangest feature compared to other PLs

But almost just closures

– Normal: easy way to pass anonymous functions to methods for

all the usual reasons

– Normal: Blocks can take 0 or more arguments

– Normal: Blocks use lexical scope: block body uses

environment where block was defined

Examples:

Spring 2016 5 CSE341: Programming Languages

3.times { puts "hi" }

[4,6,8].each { puts "hi" }

i = 7

[4,6,8].each {|x| if i > x then puts (x+1) end }

Some strange things

• Can pass 0 or 1 block with any message

– Callee might ignore it

– Callee might give an error if you do not send one

– Callee might do different things if you do/don’t send one

• Also number-of-block-arguments can matter

• Just put the block “next to” the “other” arguments (if any)

– Syntax: {e}, {|x| e}, {|x,y| e}, etc. (plus variations)

• Can also replace { and } with do and end

– Often preferred for blocks > 1 line

Spring 2016 6 CSE341: Programming Languages

Blocks everywhere

• Rampant use of great block-taking methods in standard libraray

• Ruby has loops but very rarely used

– Can write (0..i).each {|j| e}, but often better options

• Examples (consult documentation for many more)

Spring 2016 7 CSE341: Programming Languages

a = Array.new(5) {|i| 4*(i+1)}

a.each { puts "hi" }

a.each {|x| puts (x * 2) }

a.map {|x| x * 2 } #synonym: collect

a.any? {|x| x > 7 }

a.all? {|x| x > 7 }

a.inject(0) {|acc,elt| acc+elt }

a.select {|x| x > 7 } #non-synonym: filter

More strangeness

• Callee does not give a name to the (potential) block argument

• Instead, just calls it with yield or yield(args)

– Silly example:

– See code for slightly less silly example

• Can ask block_given? but often just assume a block is given

or that a block's presence is implied by other arguments

Spring 2016 8 CSE341: Programming Languages

def silly a

 (yield a) + (yield 42)

end

x.silly 5 { |b| b*2 }

Blocks are “second-class”

All a method can do with a block is yield to it

– Cannot return it, store it in an object (e.g., for a callback), …

– But can also turn blocks into real closures

– Closures are instances of class Proc

• Called with method call

This is Ruby, so there are several ways to make Proc objects 

– One way: method lambda of Object takes a block and

returns the corresponding Proc

Spring 2016 9 CSE341: Programming Languages

Example

• Blocks are fine for applying to array elements

• But for an array of closures, need Proc objects

– More common use is callbacks

Spring 2016 10 CSE341: Programming Languages

b = a.map {|x| x+1 }

i = b.count {|x| x>=6 }

a = [3,5,7,9]

c = a.map {|x| lambda {|y| x>=y}}

c[2].call 17

j = c.count {|x| x.call(5) }

Moral

• First-class (“can be passed/stored anywhere”) makes closures

more powerful than blocks

• But blocks are (a little) more convenient and cover most uses

• This helps us understand what first-class means

• Language design question: When is convenience worth making

something less general and powerful?

Spring 2016 11 CSE341: Programming Languages

More collections

• Hashes like arrays but:

– Keys can be anything; strings and symbols common

– No natural ordering like numeric indices

– Different syntax to make them

Like a dynamic record with anything for field names

– Often pass a hash rather than many arguments

• Ranges like arrays of contiguous numbers but:

– More efficiently represented, so large ranges fine

Good style to:

– Use ranges when you can

– Use hashes when non-numeric keys better represent data

Spring 2016 12 CSE341: Programming Languages

Similar methods

• Arrays, hashes, and ranges all have some methods other don’t

– E.g., keys and values

• But also have many of the same methods, particularly iterators

– Great for duck typing

– Example

 Once again separating “how to iterate” from “what to do”

Spring 2016 13 CSE341: Programming Languages

def foo a

 a.count {|x| x*x < 50}

end

foo [3,5,7,9]

foo (3..9)

Next major topic

• Subclasses, inheritance, and overriding

– The essence of OOP

– Not unlike you have seen in Java, but worth studying from PL

perspective and in a more dynamic language

Spring 2016 14 CSE341: Programming Languages

Subclassing

• A class definition has a superclass (Object if not specified)

• The superclass affects the class definition:

– Class inherits all method definitions from superclass

– But class can override method definitions as desired

• Unlike Java/C#/C++:

– No such thing as “inheriting fields” since all objects create

instance variables by assigning to them

– Subclassing has nothing to do with a (non-existent) type

system: can still (try to) call any method on any object

Spring 2016 15 CSE341: Programming Languages

class ColorPoint < Point …

Example (to be continued)

Spring 2016 16 CSE341: Programming Languages

class Point

 attr_accessor :x, :y

 def initialize(x,y)

 @x = x

 @y = y

 end

 def distFromOrigin

 # direct field access

 Math.sqrt(@x*@x

 + @y*@y)

 end

 def distFromOrigin2

 # use getters

 Math.sqrt(x*x

 + y*y)

 end

end

class ColorPoint < Point

 attr_accessor :color

 def initialize(x,y,c)

 super(x,y)

 @color = c

 end

end

An object has a class

• Using these methods is usually non-OOP style

– Disallows other things that “act like a duck”

– Nonetheless semantics is that an instance of ColorPoint

“is a” Point but is not an “instance of” Point

– [Java note: instanceof is like Ruby's is_a?]
Spring 2016 17 CSE341: Programming Languages

p = Point.new(0,0)

cp = ColorPoint.new(0,0,"red")

p.class # Point

p.class.superclass # Object

cp.class # ColorPoint

cp.class.superclass # Point

cp.class.superclass.superclass # Object

cp.is_a? Point # true

cp.instance_of? Point # false

cp.is_a? ColorPoint # true

cp.instance_of? ColorPoint # true

Example continued

• Consider alternatives to:

• Here subclassing is a good choice, but programmers often

overuse subclassing in OOP languages

Spring 2016 18 CSE341: Programming Languages

class ColorPoint < Point

 attr_accessor :color

 def initialize(x,y,c)

 super(x,y)

 @color = c

 end

end

Why subclass

• Instead of creating ColorPoint, could add methods to Point

– That could mess up other users and subclassers of Point

Spring 2016 19 CSE341: Programming Languages

class Point

 attr_accessor :color

 def initialize(x,y,c="clear")

 @x = x

 @y = y

 @color = c

 end

end

Why subclass

• Instead of subclassing Point, could copy/paste the methods

– Means the same thing if you don't use methods like is_a?

and superclass, but of course code reuse is nice

Spring 2016 20 CSE341: Programming Languages

class ColorPoint

 attr_accessor :x, :y, :color

 def initialize(x,y,c="clear")

 …

 end

 def distFromOrigin

 Math.sqrt(@x*@x + @y*@y)

 end

 def distFromOrigin2

 Math.sqrt(x*x + y*y)

 end

end

Why subclass

• Instead of subclassing Point, could use a Point instance variable

– Define methods to send same message to the Point

– Often OOP programmers overuse subclassing

– But for ColorPoint, subclassing makes sense: less work and

can use a ColorPoint wherever code expects a Point

Spring 2016 21 CSE341: Programming Languages

class ColorPoint

 attr_accessor :color

 def initialize(x,y,c="clear")

 @pt = Point.new(x,y)

 @color = c

 end

 def x

 @pt.x

 end

 … # similar “forwarding” methods

 # for y, x=, y=

end

Overriding
• ThreeDPoint is more interesting than ColorPoint because it

overrides distFromOrigin and distFromOrigin2

– Gets code reuse, but highly disputable if it is appropriate to
say a ThreeDPoint “is a” Point

– Still just avoiding copy/paste

Spring 2016 22 CSE341: Programming Languages

class ThreeDPoint < Point

 …

 def initialize(x,y,z)

 super(x,y)

 @z = z

 end

 def distFromOrigin # distFromOrigin2 similar

 d = super

 Math.sqrt(d*d + @z*@z)

 end

 …

end

So far…

• With examples so far, objects are not so different from closures

– Multiple methods rather than just “call me”

– Explicit instance variables rather than environment where

function is defined

– Inheritance avoids helper functions or code copying

– “Simple” overriding just replaces methods

• But there is one big difference:

Overriding can make a method defined in the superclass

 call a method in the subclass

– The essential difference of OOP, studied carefully next lecture

Spring 2016 23 CSE341: Programming Languages

Example: Equivalent except constructor

Spring 2016 24 CSE341: Programming Languages

class PolarPoint < Point

 def initialize(r,theta)

 @r = r

 @theta = theta

 end

 def x

 @r * Math.cos(@theta)

 end

 def y

 @r * Math.sin(@theta)

 end

 def distFromOrigin

 @r

 end

 …

end

• Also need to define x= and y=

(see code file)

• Key punchline:
distFromOrigin2, defined

in Point, “already works”

– Why: calls to self are

resolved in terms of the

object's class

def distFromOrigin2

 Math.sqrt(x*x+y*y)

end

