CSE341: Programming Languages

Lecture 17
Implementing Languages Including Closures

Dan Grossman
Spring 2016
Typical workflow

concrete syntax (string)

"(fn x => x + x) 4"

abstract syntax (tree)

Function

x

Var

x

Constant

4

Call

Possible errors / warnings

Type checking?

Rest of implementation

Possible errors / warnings

Parsing
**Interpreter or compiler**

So “rest of implementation” takes the abstract syntax tree (AST) and “runs the program” to produce a result.

Fundamentally, two approaches to implement a PL $B$:

- **Write an interpreter** in another language $A$:
  - Better names: evaluator, executor
  - Take a program in $B$ and produce an answer (in $B$)

- **Write a compiler** in another language $A$ to a third language $C$:
  - Better name: translator
  - Translation must *preserve meaning* (equivalence)

We call $A$ the **metalanguage**
  - Crucial to keep $A$ and $B$ straight
Reality more complicated

Evaluation (interpreter) and translation (compiler) are your options
  – But in modern practice have both and multiple layers

A plausible example:
  – Java compiler to bytecode intermediate language
  – Have an interpreter for bytecode (itself in binary), but compile frequent functions to binary at run-time
  – The chip is itself an interpreter for binary
    • Well, except these days the x86 has a translator in hardware to more primitive micro-operations it then executes

DrRacket uses a similar mix
Sermon

Interpreter versus compiler versus combinations is about a particular language implementation, not the language definition.

So there is no such thing as a “compiled language” or an “interpreted language”

– Programs cannot “see” how the implementation works

Unfortunately, you often hear such phrases

– “C is faster because it’s compiled and LISP is interpreted”
– This is nonsense; politely correct people

– (Admittedly, languages with “eval” must “ship with some implementation of the language” in each program)
Typical workflow

concrete syntax (string)
"(fn x => x + x) 7"

abstract syntax (tree)

Possible errors / warnings

Parsing

Call

Function

Constant

4

Var

x

Var

x

Possible errors / warnings

Type checking?

Interpreter or translator
Skipping parsing

- If implementing PL $B$ in PL $A$, we can skip parsing
  - Have $B$ programmers write ASTs directly in PL $A$
  - Not so bad with ML constructors or Racket structs
  - Embeds $B$ programs as trees in $A$

```
; define B’s abstract syntax
(struct call ...)
(struct function ...)
(struct var ...)
...

; example B program
(call (function (list “x”))
   (add (var “x”) (var “x”)))
   (const 4))
```
Already did an example!

- Let the metalanguage $A = \text{Racket}$
- Let the language-implemented $B = \text{“Arithmetic Language”}$
- Arithmetic programs written with calls to Racket constructors
- The interpreter is $\text{eval-exp}$

```scheme
(define (eval-exp e)
  (cond
    [(const? e) e]
    [(negate? e)
      (const (- (const-int
                    (eval-exp (negate-e e)))))]
    [(add? e) ...]
    [(multiply? e) ...]...)
```

Racket data structure is Arithmetic Language program, which eval-exp runs
What we know

• Define (abstract) syntax of language $B$ with Racket structs
  – $B$ called MUPL in homework
• Write $B$ programs directly in Racket via constructors
• Implement interpreter for $B$ as a (recursive) Racket function

Now, a subtle-but-important distinction:
  – Interpreter can *assume* input is a “legal AST for $B$”
    • Okay to give wrong answer or inscrutable error otherwise
  – Interpreter *must check* that recursive results are the right kind of value
    • Give a good error message otherwise
Legal ASTs

• "Trees the interpreter must handle" are a subset of all the trees Racket allows as a dynamically typed language

(\textbf{struct} \texttt{const} (\texttt{int}) \#:\texttt{transparent})
(\textbf{struct} \texttt{negate} (\texttt{e}) \#:\texttt{transparent})
(\textbf{struct} \texttt{add} (\texttt{e1} \texttt{e2}) \#:\texttt{transparent})
(\textbf{struct} \texttt{multiply} (\texttt{e1} \texttt{e2}) \#:\texttt{transparent})

• Can assume "right types" for \texttt{struct} fields
  – \texttt{const} holds a number
  – \texttt{negate} holds a legal AST
  – \texttt{add} and \texttt{multiply} hold 2 legal ASTs

• Illegal ASTs can "crash the interpreter" – \textit{this is fine}

(multiply (add (const 3) "uh-oh") (const 4))
(negate -7)
**Interpreter results**

- Our interpreters return expressions, but not any expressions
  - Result should always be a *value*, a kind of expression that evaluates to itself
  - If not, the interpreter has a bug

- So far, only values are from `const`, e.g., `(const 17)`

- But a larger language has more values than just numbers
  - Booleans, strings, etc.
  - Pairs of values (definition of value recursive)
  - Closures
  - ...
Example

See code for language that adds booleans, number-comparison, and conditionals:

```plaintext
(struct bool (b) #:transparent)
(struct eq-num (e1 e2) #:transparent)
(struct if-then-else (e1 e2 e3) #:transparent)
```

What if the program is a legal AST, but evaluation of it tries to use the wrong kind of value?

- For example, “add a boolean”
- You should detect this and give an error message not in terms of the interpreter implementation
- Means checking a recursive result whenever a particular kind of value is needed
  - No need to check if any kind of value is okay
Dealing with variables

• Interpreters so far have been for languages without variables
  – No let-expressions, functions-with-arguments, etc.
  – Language in homework has all these things

• This segment describes in English what to do
  – Up to you to translate this to code

• Fortunately, what you have to implement is what we have been stressing since the very, very beginning of the course
Dealing with variables

- An environment is a mapping from variables (Racket strings) to values (as defined by the language)
  - Only ever put pairs of strings and values in the environment

- Evaluation takes place in an environment
  - Environment passed as argument to interpreter helper function
  - A variable expression looks up the variable in the environment
  - Most subexpressions use same environment as outer expression
  - A let-expression evaluates its body in a larger environment
The Set-up

So now a recursive helper function has all the interesting stuff:

```
(define (eval-under-env e env)
  (cond ... ; case for each kind of
         )) ; expression
```

– Recursive calls must “pass down” correct environment

Then `eval-exp` just calls `eval-under-env` with same expression and the `empty environment`

On homework, environments themselves are just Racket lists containing Racket pairs of a string (the MUPL variable name, e.g., "x") and a MUPL value (e.g., `(int 17)`)
A grading detail

- Stylistically \texttt{eval-under-env} would be a helper function one could define locally inside \texttt{eval-exp}

- But do not do this on your homework
  - We have grading tests that call \texttt{eval-under-env} directly, so we need it at top-level
The best part

• The most interesting and mind-bending part of the homework is that the language being implemented has first-class closures
  – With lexical scope of course

• Fortunately, what you have to implement is what we have been stressing since we first learned about closures…
Higher-order functions

The “magic”: How do we use the “right environment” for lexical scope when functions may return other functions, store them in data structures, etc.?

Lack of magic: The interpreter uses a closure data structure (with two parts) to keep the environment it will need to use later

(struct closure (env fun) #:transparent)

Evaluate a function expression:

– A function is *not* a value; a closure *is* a value
  • Evaluating a function returns a closure
– Create a closure out of (a) the function and (b) the current environment when the function was evaluated

Evaluate a function call:

– …
Function calls

• Use current environment to evaluate $e_1$ to a closure
  – Error if result is a value that is not a closure
• Use current environment to evaluate $e_2$ to a value
• Evaluate closure’s function’s body in the closure’s environment, extended to:
  – Map the function’s argument-name to the argument-value
  – And for recursion, map the function’s name to the whole closure

This is the same semantics we learned a few weeks ago “coded up”

Given a closure, the code part is only ever evaluated using the environment part (extended), not the environment at the call-site
Is that expensive?

• *Time* to build a closure is tiny: a struct with two fields

• *Space* to store closures *might* be large if environment is large
  – But environments are immutable, so natural and correct to have lots of sharing, e.g., of list tails (cf. lecture 3)
  – Still, end up keeping around bindings that are not needed

• Alternative used in practice: When creating a closure, store a possibly-smaller environment holding only the variables that are *free variables* in the function body
  – Free variables: Variables that occur, not counting shadowed uses of the same variable name
  – A function body would never need anything else from the environment
Free variables examples

(lambda () (+ x y z)) ; {x, y, z}

(lambda (x) (+ x y z))  ; {y, z}

(lambda (x) (if x y z)) ; {y, z}

(lambda (x) (let ([y 0]) (+ x y z))) ; {z}

(lambda (x y z) (+ x y z)) ; {}

(lambda (x) (+ y (let ([y z]) (+ y y)))) ; {y, z}
Computing free variables

- So does the interpreter have to analyze the code body every time it creates a closure?

- No: Before evaluation begins, compute free variables of every function in program and store this information with the function

- Compared to naïve store-entire-environment approach, building a closure now takes more time but less space
  - And time proportional to number of free variables
  - And various optimizations are possible

- [Also use a much better data structure for looking up variables than a list]
Optional: compiling higher-order functions

• If we are compiling to a language without closures (like assembly), cannot rely on there being a “current environment”

• So compile functions by having the translation produce “regular” functions that all take an extra explicit argument called “environment”

• And compiler replaces all uses of free variables with code that looks up the variable using the environment argument
  – Can make these fast operations with some tricks

• Running program still creates closures and every function call passes the closure’s environment to the closure’s code
Recall…

Our approach to language implementation:

• Implementing language $B$ in language $A$
• Skipping parsing by writing language $B$ programs directly in terms of language $A$ constructors
• An interpreter written in $A$ recursively evaluates

What we know about macros:

• Extend the syntax of a language
• Use of a macro expands into language syntax before the program is run, i.e., before calling the main interpreter function
Put it together

With our set-up, we can use language $A$ (i.e., Racket) \textit{functions} that produce language $B$ abstract syntax as language $B$ “macros”

- Language $B$ programs can use the “macros” as though they are part of language $B$

- No change to the interpreter or struct definitions

- Just a programming idiom enabled by our set-up
  - Helps teach what macros are

- See code for example “macro” definitions and “macro” uses
  - “macro expansion” happens before calling \texttt{eval-exp}
Hygiene issues

• Earlier we had material on hygiene issues with macros
  – (Among other things), problems with shadowing variables when using local variables to avoid evaluating expressions more than once

• The “macro” approach described here does not deal well with this