haskell



cons

In haskell consing is done via the infix operator (:).
For example:

(cons 1 (cons 2 (cons 3 null)))
Is the same as
1:2:3:[]

In haskell



types

Haskell has types! Love the typechecker

Some of these types you are familiar with, for example:
Integer

Double

Char

Bool

and their associated list types like [Bool]



More types

Haskell also supports polymorphism
For example the identity function looks like
id::a—a
id X = X

Polymorphic types have type variables, in the above example
'a' Is the type variable.

When writing down your own types you can use whatever
character sequence you want as type variables



Arrow types

 Haskell also has types you are potentially
unfamiliar with

* For example:
Integer —» String - Bool

IS a type



associativity

* Racket has no syntax

 We needed to write our programs as an abstract
syntax tree

* This was good because there was no ambiqguity
about how things associate

* It was bad because we had to get used to reading

parentheses-encrusted code))])))))]))



What is associativity?

« Associativity is the order in which things execute in the
absence of parentheses

 Parentheses make it clear how things associate

» Left associativity is when we execute statements left-to-
right, for example if ~ is a binary operator, then

l1~2~3~4~5
Is computed in the order

(1 ~2) ~3)~4)~5)



What is associativity?

* Right associativity the same as left
associativity except from right-to-left. So
the previous example would be computed
as

(1~(2~(3~(4~)53))))



Arrow types associativity

* It is important to remember that in haskell arrow types are
right associative

 The arrow type
tl->t2-t3->1t4 ->1t5
Is implicitly parenthesized like
(tl - (t2 » (t3 = (t4 - t5))))

« However the type checker will remove parentheses when
they are not required to enforce correct precedence



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

