
CSE 341, Winter 2014, Assignment 8
Symbolic Polynomials in Ruby

Due: Wednesday March 12, 10:00pm

The purpose of this assignment is to give you additional experience programming in Ruby, including how to
integrate new classes with existing system ones (particularly numeric ones).

30 points total; up to 10% extra for the extra credit question.

You can use at most 2 late days for this assignment. Important: if you plan to use the late days, turn
in a note in the dropbox for the assignment saying that you plan to use the late days. That way
the TAs can get started on grading the assignments that have been turned in on Wednesday, rather than
not knowing whether an assignment will be replaced with a new one. (It’s the end of the quarter and they
need to finish up!)

Define a Ruby class Polynomial that represents symbolic polynomials in n variables. Your class should
understand the messages +, -, *, to_s, and initialize, along with any helper methods you need. Any
helper methods that aren’t used outside the polynomial class should be either private or protected. The +

method should return a new polynomial that is the sum of the receiver and the argument; and similarly for
- and *. The to_s method must return the string that represents the polynomial in normalized form, as
a sum of 1 or more terms. Each term should be a coefficient (which can default to 1) times zero or more
variables. Any term with a zero coefficient should be dropped. There shouldn’t be multiple terms with the
same set of variables — these should be combined. The only other requirement is that the expression must
be legal Ruby code, which would evaluate to the correct value if you were to give bindings for any variables
— otherwise you can print out the polynomial in any convenient form.

Also define a asPolynomial method for Numeric that converts a number to a polynomial (with a single term
with the number as the coefficient and no variables); and a asPolynomial method for String that converts
a string to a polynomial with one variable, whose name is the string.

Finally, polynomials should interoperate correctly with ordinary Ruby numbers: if p is a polynomial, 2*p,
p*2, 2+p, p+2, 2-p, and p-2 should all work.

Here are some examples:

3.asPolynomial should return a new polynomial with a single term, consisting of a coefficient of 3 and no
variables. In the sample solution it prints as Polynomial(3).

"x".asPolynomial should return a new polynomial with a single term with a coefficient of 1 and a single
variable x. In the sample solution it prints as Polynomial(x).

Here is some sample output. We first declare a couple of variables x and y to hold polyomials, and then use
them in expressions. Notice that terms with the same variables are combined (even for example if the terms
are written as 2*x*y and y*3*x — these both have the same variables, namely x and y). Also in the sample
solution, minus isn’t handled particularly elegantly for to_s – that’s OK (the expression part just needs to
be legal Ruby).

>> x = "x".asPolynomial

=> Polynomial(x)

>> y = "y".asPolynomial

=> Polynomial(y)

>> -10.asPolynomial

1

=> Polynomial(-10)

>> 2*x*y +3

=> Polynomial(2*x*y + 3)

>> (x+3)*y

=> Polynomial(x*y + 3*y)

>> x-8

=> Polynomial(x + -8)

>> 2*x*y*x*x +3

=> Polynomial(2*x*x*x*y + 3)

>> (x+1)*(x-1)

=> Polynomial(x*x + -1)

>> (3*x+5)*0

=> Polynomial(0)

>> 10*y+3*x

=> Polynomial(3*x + 10*y)

>> 2*x*y + x*3*y

=> Polynomial(5*x*y)

>> 10*x*y + 1 + y*3*x*2 + 10

=> Polynomial(16*x*y + 11)

Hints: Choosing a good representation is important. (Consider using a Hash.)

If you’ve defined a asPolynomial method for Numeric, then it should be easy to make expressions like
x+2 work. But what about 2+x? That ought to work as well, but here 2 is getting the message + with a
Polynomial as an argument. To make this work, you’ll need to define an appropriate coerce method for
Polynomial. See the complex number example on the class web page, as well as the Ruby documentation.
And also try coerce on integers and floats to explore coercion works in Ruby. The RomanNumeral example
in the printed Programming Ruby book provides an additional example.

In the sample solution we construct polynomials (both for testing in irb and the unit tests) by binding some
variables to simple polynomials (with just a single variable), and then building more complex ones using +
- *. The sample output illustrates this. In other words, we don’t expect Polynomial.new("10*x^2 + y")

to work — instead, construct this polynomial by evaluating

x = "x".asPolynomial

y = "y".asPolynomial

10*x*x + y

Exactly how you implement the initialize method for Polynomial is up to you — it’s not part of the spec, so
do whatever is convenient and a clean solution.

In the sample solution, calling new with no arguments returns the 0 polynomial. There are two optional
parameters: a variable and a coefficient. These parameters are only used when implementing asPolynomial

for Numeric and String — for everything else, just build polynomials from simpler ones.

2

Turnin: Turn in two .rb files: one the polynomial class definition, along with any additional methods for
system classes, named polynomial.rb ; and another file with unit tests named polynomial-test.rb.

Extra Credit (max 10% extra):

Clean up printing to deal with minus in a cleaner way. (This is pretty easy.)

Add support for exponentiation by defining the ** operator for polynomials. You can assume that the expo-
nent will be a non-negative integer. In addition, clean up the way polynomials are printed (and represented
internally) by using exponents rather than just repeating variables in terms. For example x*10*x*x should
result in Polynomial(10*x**3), and (x+1)**3 should result in Polynomial(x**3 + 3*x**2 + 3*x + 1).

3

