
CSE 341, Winter 2014, Assignment 4
Octopus Interpreter

Due: Friday Feb 7, 10:00pm
Assignment updated Feb 1

The purpose of this assignment is to give you experience with writing a larger program in Haskell, and also
with writing interpreters. All your code should be in the functional part of Haskell (no monads), except for
the unit tests and for the final read-eval-print loop (Question 8).

Points: 60 points, plus up to 6 points extra credit.

Start early! This assignment doesn’t involve writing that much code, but you’ll need to understand and
extend existing Haskell code, and to understand thoroughly the semantics of closures in Racket. Plus
debugging an interpreter will be a new skill.

You can use up to 4 late days for this assignment.

Turnin: Turn in one file: OctopusInterpreter.hs, which should include all your functions and unit
tests. If you do the String extra credit problem (Question 10), also turn in your parser file. If you do
the dynamic scoping extra credit problem (Question 9), turn in another version of the interpreter called
OctopusInterpreterDynamicScope.hs.

You don’t need to turn in sample output — the unit tests are enough for those. As usual, your program should
be tastefully commented. Style counts! In particular, think about where you can use pattern matching and
higher order functions to good effect to simplify your program; and avoid unnecessary repeated computations.

Overview: The Octopus programming language is a small subset of Racket, but even though it leaves out
many of Racket’s features, it is still among the most expressive of the invertebrate programming languages.

Every Octopus program is also a legal Racket program. The data types in Octopus are integers, booleans,
symbols, lists, and functions. There are no side effects. Functions are defined using lambda, which has exactly
the same meaning as in Racket — it creates a lexical closure. The other special forms are let, quote, if,
and (if you do the recursion extra credit question) letrec. One important restriction is that there is no
define special form — to create and bind new variables, use let or lambda. Some other minor restrictions
are that let and lambda always have just one expression in the body (since there are no side effects, having
multiple forms wouldn’t be useful). The functions +, -, and * take exactly two arguments. Finally, lists are
always proper lists — no dotted pairs like (2 . 3).

There are two starter files, linked from the class website: OctoParser.y and
OctopusInterpreter-starter.hs. OctoParser.y is a parser for Octopus, written using the Happy
parser generator (http://www.haskell.org/happy/). Unless you do the string extra credit question, you
shouldn’t need to modify it at all. Just run the Happy parser generator from the command line:

happy OctoParser.y

This should generate a file OctoParser.hs that is the parser. (This .hs file isn’t intended to be particularly
human-readable.)

Download OctopusInterpreter-starter.hs and rename it to OctopusInterpreter.hs. Load it into
Haskell and run the first few unit tests using run, to make sure things are working OK. The interpreter will
automatically load the parser (make sure they are in the same directory).

The key things you need from the parser are the types Environment and OctoExpr, and a function parse
whose type is String -> OctoExpr. You’ll need to know the definition of these types in writing your
interpreter — here they are (or look in OctoParser.y):
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-- An environment is a list of (name,value) pairs.
type Environment = [(String,OctoExpr)]

{- Declarations of the datatype for Octopus data. The constructors
used in data produced by the parser are OctoInt (Octopus integers),
OctoSymbol (Octopus symbols, or atoms), and OctoList (lists). The
remaining two types, OctoClosure and OctoPrimitive are not actually
used by the parser, just the interpreter.-}

data OctoExpr
= OctoInt Int
| OctoSymbol String
| OctoList [OctoExpr]
| OctoClosure [String] Environment OctoExpr
| OctoPrimitive String
deriving (Show, Eq)

Experiment a bit with this. For example, parse "(+ 3 4)" should return
OctoList [OctoSymbol "+",OctoInt 3,OctoInt 4].

Then begin adding functionality to the parser, as described below. Most of the calls to the unit tests are
commented out — enable more and more of them as you add functionality. You will also need to add unit
tests for the primitive functions — right now there is only a test for +. The other tests are enough to test
the other functionality, although you are welcome to add more if you want.

You don’t need to do error checking in your interpreter. (The starter program does include a little error
checking, for example for parse errors and unbound variables, which helps with debugging.)

1. (12 points) Add new primitives for -, *, cons, car, cdr, and equal?. Add unit tests for these. To add
these primitives, write new Haskell functions octominus, octotimes, and so forth, following octoplus
as a model, and add them to the list of primitives (defined just before octoplus in the starter code).
You shouldn’t need to modify the eval function at all for this question.

2. (10 points) Write a function octoshow that turns any Octopus expression (represented as data of
type OctoExpr) into a string. Here are a few examples:

OctoInt 7 => "7"
OctoList [OctoInt 1, OctoInt 2, OctoInt 3] => "(1 2 3)"
OctoList [OctoSymbol "squid", OctoSymbol "clam"] => "(squid clam)"
OctoList [OctoSymbol "quote", OctoSymbol "squid"] => "’squid"

Modulo white space, parse and octoshow are inverses. Note that for lists there shouldn’t be an extra
space before the right parenthesis. (Hint: the Haskell function unwords may be useful.) For example:

octoshow $ parse "7" => "7"
octoshow $ parse "(1 2 3 )" => "(1 2 3)"
octoshow $ parse "(+ 1 (* 2 3))" => "(+ 1 (* 2 3))"
octoshow $ parse "’(1 2 3)" => "’(1 2 3)"
octoshow $ parse "’squid" => "’squid"

You won’t encounter an OctoClosure or an OctoPrimitive in parser output — these are just used
internally in the interpreter. So you can show them just as "<closure>" and "<primitive>" respec-
tively. (You can return something more elaborate if you wish, but it’s not required. For example the
sample solution shows the primitive for + as "<primitive +>".)
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3. (8 points) The starter interpreter includes code to handle applying primitive functions but not user
defined functions (i.e. ones written using lambda). Fill this in (search for the text TO BE WRITTEN).
The tests test_lambda1, test_lambda2, and test_shadow should now succeed. The code for this is
just a couple of lines in the sample solution, but you might find it a bit tricky to figure out. Be sure
and read the comment before the skeleton of apply regarding what needs to be evaluated where. You
just need to replace the error ... part of the definition of apply for this question; you shouldn’t need
to modify the final case of eval (which is where apply is called from).

After you have lambda working, add the null? function to the global environment — it’s already writ-
ten, but you need to change the definition of global_env. Search for global_env = primitive_env
in the starter code, and replace that with the commented-out code that follows. (This was commented
out initially, since it requires lambda to work.)

4. (5 points) Add code to handle the if special form. Implement this directly — this should be straight-
forward. This will involve adding a new case to the eval function. The tests test_if_true and
test_if_false should now succeed.

5. (5 points) Add a function not to the global environment. This should be defined in Octopus (like
null?) rather than written as a primitive. (Search for null? and follow that as an example — do not
modify the eval function by adding a special case for not.)

6. (10 points) Add code to handle the let special form. There are at least two ways to do this. One
is by implementing it directly, as you did with if in Question 4. Another is to define it as a derived
expression in terms of lambda — that is, the case of your eval function that handles let should produce
a new expression using lambda, and then evaluate that. For example, suppose you are evaluating this
let expression:

(let ((x 5)
(y 10))

(+ x y))

Produce the following expression that uses lambda, and evaluate that. Notice that the lambda takes
care of all of the work of evaluating the bindings for x and y in the proper environment, making a new
environment, and evaluating the body of the let .

( (lambda (x y) (+ x y)) 5 10)

Using either technique is fine, but please be sure you understand how they both work. In either case
you will need to add a new case to the eval function. (You can’t just make it a new primitive since
it’s a special form, and you need to control how the parts are evaluated.)

7. (5 points) Add a primitive to implement an Octopus eval function. This should work like the one-
argument version of eval in Racket, in other words, the one without the namespace argument. Again
as with Racket, the expression should be evaluated in the global namespace in that case (for the
Octopus interpreter, this is stored in global_env). Hint: first evaluate the argument in the current
environment. (Defining eval as a primitive will automatically take care of doing this.) Then evaluate
the result again in the global environment. There are some unit tests that check this.

8. (10 points) Finally, add a simple read-eval-print loop, using Haskell’s IO functions (monads). The loop
should get a line from the keyboard, parse it, evaluate it, convert it to a string using octoshow, and
print it out. Keep looping until the user types a blank line.

There is a compiled version of the Octopus interpreter on attu, if you want to try the read-eval-print
loop: invoke it from the shell using ~borning/octopus.
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9. Extra Credit. (1 point) Racket (and Octopus) use static scoping. Older Lisps, and some other older
languages, use dynamic scoping. To look up a name, look in the current function, then look up the
calling stack until you find it (or fall off the end). Even though this is a major change in the semantics
of the language, it’s easy to convert your Octopus interpreter to use dynamic scoping. Do that (turn
in a separate file named OctopusInterpreterDynamicScope.hs). Include a test case that shows that
it is working. In addition, some of the existing tests will fail with dynamic scoping. In a comment at
the top of your program, indicate what your new dynamic scope test is, and which of the existing tests
fail and why.

As an example, this code will give an error with Racket and Octopus, but works with dynamic
scoping:

(let ((f (lambda (x) (+ x y))))
(let ((y 10)) (f 20)))

In Octopus, this gives an error — y is unbound in the body of f. But with dynamic scoping, it
finds the binding to 10. (There are problems and subtle bugs that arise with dynamic scoping — you
can end up with variables captured that you didn’t intend — and it’s harder for both humans and
compilers to reason about. But you should know the concept.)

10. Extra Credit. (2 points) Add a string datatype to Octopus, and add a primitive string-append
function. After this is done, you should be able to evaluate expressions like this:

(string-append "giant" "squid")

To simplify this, you can restrict string-append to exactly two arguments, and also not handle strings
with embedded double quotes (so no "oyster\"clam"). Provide an appropriate unit test. For this
extra credit problem, you’ll need to modify the parser as well as the interpeter. (You should at least
skim Chapter 2 of the Happy parser documentation.)

11. Extra Credit. (3 points) The let special form allows you to define functions by binding a lambda to
a variable — but since the function name isn’t known in the lambda, the function can’t be recursive.
Racket has a variant of let, called letrec, to support just such recursion. Add a special form for a
limited version of letrec, which allows for binding only a single variable to a function of one argument.
This is enough to open up lots of additional possibilities for functions — the unit tests include factorial
and count functions. And if you want a function of two arguments, just write a curried version —
there is another unit test with a curried version of map.

Racket handles letrec by creating the variables in the letrec, temporarily binding them to
#<undefined>, and then going back and splicing in pointers to their values. However, we’re not
using side effects. One approach (which would also work if we were writing the Octopus interpreter
in the functional subset of Racket) is to use the Y combinator, which allows you to unroll a recursive
function into a non-recursive version. We’ll talk about the Y combinator in lecture. There is also an
example Racket program on the assignments web page that gives a definition of the Y combinator, a
letrec definition of a recursive function, and a translation of the recursive function into a non-recursive
version . . . you can use this as a model for your solution. Another approach — which is considerably
simpler, and also handles functions with an arbitrary number of arguments — relies on the fact that
Haskell uses lazy evaluation (so it wouldn’t work in Racket). Either approach is acceptable for this
problem. If you take the second approach, explain in a comment why it wouldn’t work in Racket.
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