Nested patterns

- We can nest patterns as deep as we want
 - Just like we can nest expressions as deep as we want
 - Often avoids hard-to-read, wordy nested case expressions
- So the full meaning of pattern-matching is to compare a pattern against a value for the "same shape" and bind variables to the "right parts"
 - More precise recursive definition coming after examples

Style

- Nested patterns can lead to very elegant, concise code
 - Avoid nested case expressions if nested patterns are simpler and avoid unnecessary branches or let-expressions
 - Example: unzip3 and nondecreasing
 - A common idiom is matching against a tuple of datatypes to compare them
 - Examples: zip3 and multsign
- Wildcards are good style: use them instead of variables when you do not need the data
 - Examples: len and multsign

Useful example: zip/unzip 3 lists

```ocaml
fun zip3 lists = 
case lists of
  ([],[],[]) => []
  | (hd1::tl1,hd2::tl2,hd3::tl3) =>
    (hd1,hd2,hd3)::zip3(tl1,tl2,tl3)
  | _ => raise ListLengthMismatch

fun unzip3 triples = 
case triples of
  [] => ([],[],[])
  | (a,b,c)::tl =>
    let val (l1, l2, l3) = unzip3 tl
    in
      (a::l1,b::l2,c::l3)
    end
```

More examples to come (see code files)
(Most of) the full definition

The semantics for pattern-matching takes a pattern p and a value v and decides (1) does it match and (2) if so, what variable bindings are introduced.

Since patterns can nest, the definition is elegantly recursive, with a separate rule for each kind of pattern. Some of the rules:

- If p is a variable x, the match succeeds and x is bound to v.
- If p is _, the match succeeds and no bindings are introduced.
- If p is (p_1, \ldots, p_n) and v is (v_1, \ldots, v_n), the match succeeds if and only if p_1 matches v_1, \ldots, p_n matches v_n. The bindings are the union of all bindings from the submatches.
- If p is $C\ p_1$, the match succeeds if v is $C\ v_1$ (i.e., the same constructor) and p_1 matches v_1. The bindings are the bindings from the submatch.
- ... (there are several other similar forms of patterns)

Examples

- Pattern $a:b:c:d$ matches all lists with ≥ 3 elements
- Pattern $a:b:c:[\]$ matches all lists with 3 elements
- Pattern $((a, b), (c, d))\ e$ matches all non-empty lists of pairs of pairs

Exceptions

An exception binding introduces a new kind of exception

```
exception MyFirstException
exception MySecondException of int * int
```

The `raise` primitive raises (a.k.a. throws) an exception

```
raise MyFirstException
raise (MySecondException(7,9))
```

A handle expression can handle (a.k.a. catch) an exception

- If doesn’t match, exception continues to propagate

```
e1 handle MyFirstException => e2
e1 handle MySecondException(x, y) => e2
```

Actually…

Exceptions are a lot like datatype constructors…

- Declaring an exception adds a constructor for type `exn`
- Can pass values of `exn` anywhere (e.g., function arguments)
 - Not too common to do this but can be useful
- `handle` can have multiple branches with patterns for type `exn`
Recursion

Should now be comfortable with recursion:

• No harder than using a loop (whatever that is 😄)
• Often much easier than a loop
 – When processing a tree (e.g., evaluate an arithmetic expression)
 – Examples like appending lists
 – Avoids mutation even for local variables
• Now:
 – How to reason about efficiency of recursion
 – The importance of tail recursion
 – Using an accumulator to achieve tail recursion
 – [No new language features here]

Call-stacks

While a program runs, there is a call stack of function calls that have started but not yet returned

– Calling a function \(f \) pushes an instance of \(f \) on the stack
– When a call to \(f \) finishes, it is popped from the stack

These stack-frames store information like the value of local variables and “what is left to do” in the function

Due to recursion, multiple stack-frames may be calls to the same function

Example

\[
\text{fun fact n} = \text{if n=0 then 1 else n*fact(n-1)}
\]

\[
\begin{align*}
\text{val x = fact 3} \\
\text{fact 3: 3*} \\
\text{fact 2: 2*} \\
\text{fact 1: 1*} \\
\text{fact 0: 1}
\end{align*}
\]

Example Revised

\[
\text{fun fact n} = \\
\text{let fun aux(n,acc) =} \\
\text{if n=0 then acc else aux(n-1,acc*n)} \\
\text{in aux(n,1) end} \\
\text{val x = fact 3}
\]

Still recursive, more complicated, but the result of recursive calls is the result for the caller (no remaining multiplication)
The call-stacks

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>aux(3,1)</td>
<td>aux(3,1)</td>
<td>aux(3,1)</td>
<td>aux(3,1)</td>
</tr>
<tr>
<td>aux(2,3)</td>
<td>aux(2,3)</td>
<td>aux(2,3)</td>
<td>aux(2,3)</td>
</tr>
<tr>
<td>aux(1,6)</td>
<td>aux(1,6)</td>
<td>aux(1,6)</td>
<td>aux(1,6)</td>
</tr>
<tr>
<td>aux(0,6)</td>
<td>aux(0,6)</td>
<td>aux(0,6)</td>
<td>aux(0,6)</td>
</tr>
</tbody>
</table>

An optimization

It is unnecessary to keep around a stack-frame just so it can get a callee's result and return it without any further evaluation.

ML recognizes these tail calls in the compiler and treats them differently:
- Pop the caller before the call, allowing callee to reuse the same stack space
- (Along with other optimizations,) as efficient as a loop

Reasonable to assume all functional-language implementations do tail-call optimization

What really happens

fun fact n =
 let fun aux(n,acc) =
 if n=0
 then acc
 else aux(n-1,acc*n)
 in
 aux(n,1)
 end
val x = fact 3

Moral of tail recursion

• Where reasonably elegant, feasible, and important, rewriting functions to be tail-recursive can be much more efficient
 – Tail-recursive: recursive calls are tail-calls
• There is a methodology that can often guide this transformation:
 – Create a helper function that takes an accumulator
 – Old base case becomes initial accumulator
 – New base case becomes final accumulator
Methodology already seen

```haskell
fun fact n = 
  let fun aux(n,acc) = 
       if n=0 
       then acc 
          
       else aux(n-1,acc*n) 
  in 
     aux(n,1) 
   end 

val x = fact 3
```

Another example

```haskell
fun sum xs = 
  case xs of 
      [] => 0 
    | x::xs' => x + sum xs' 

fun sum xs = 
  let fun aux(xs,acc) = 
       case xs of 
        [] => acc 
    | x::xs' => aux(xs',x+acc) 
  in 
     aux(xs,0) 
  end
```

And another

```haskell
fun rev xs = 
    case xs of 
      [] => [] 
    | x::xs' => (rev xs') @ [x]
```

Actually much better

```haskell
fun rev xs = 
    let fun aux(xs,acc) = 
       case xs of 
        [] => acc 
    | x::xs' => aux(xs',x::acc) 
  in 
     aux(xs,[])
end
```

- For fact and sum, tail-recursion is faster but both ways linear time
- Non-tail recursive rev is quadratic because each recursive call uses append, which must traverse the first list
 - And 1+2+…+(length-1) is almost length*length/2
 - Moral: beware list-append, especially within outer recursion
- Cons constant-time (and fast), so accumulator version much better
Always tail-recursive?

There are certainly cases where recursive functions cannot be evaluated in a constant amount of space.

Most obvious examples are functions that process trees.

In these cases, the natural recursive approach is the way to go:
- You could get one recursive call to be a tail call, but rarely worth the complication.

Also beware the wrath of premature optimization:
- Favor clear, concise code
- But do use less space if inputs may be large.

What is a tail-call?

The “nothing left for caller to do” intuition usually suffices:
- If the result of \(f \ x \) is the “immediate result” for the enclosing function body, then \(f \ x \) is a tail call.

But we can define “tail position” recursively:
- Then a “tail call” is a function call in “tail position”.

Precise definition

A tail call is a function call in tail position:

- If an expression is not in tail position, then no subexpressions are.
- In `fun f p = e`, the body `e` is in tail position.
- If `if e1 then e2 else e3` is in tail position, then `e2` and `e3` are in tail position (but `e1` is not). (Similar for case-expressions)
- If `let b1 ... bn in e end` is in tail position, then `e` is in tail position (but no binding expressions are).
- Function-call `arguments e1 e2` are not in tail position.
- ...

21 22