What is an ML program?

A sequence of bindings from names to expressions.

Build powerful progs by composing simple constructs.

Build rich exprs from simple exprs

Build rich types from simple types
Function definitions

Functions: the most important building block in the whole course
- Like Java methods, have arguments and result
- But no classes, `this`, `return`, etc.

Example function binding:

(* Note: correct only if y>=0 *)

```plaintext
fun pow (x : int, y : int) =
  if y=0
  then 1
  else x * pow(x,y-1)
```

Note: The body includes a (recursive) function call: `pow(x,y-1)`
Example, extended

```plaintext
fun pow (x : int, y : int) =  
    if y=0  
    then 1  
    else x * pow(x,y-1)

fun cube (x : int) =  
    pow (x,3)

val sixtyfour = cube 4

val fortytwo = pow(2,2+2) + pow(4,2) + cube(2) + 2
```
Some gotchas

Three common “gotchas”

• Bad error messages if you mess up function-argument syntax

• The use of * in type syntax is not multiplication
 – Example: int * int -> int
 – In expressions, * is multiplication: x * pow(x,y-1)

• Cannot refer to later function bindings
 – That’s simply ML’s rule
 – Helper functions must come before their uses
 – Need special construct for mutual recursion (later)
Recursion

• If you’re not yet comfortable with recursion, you will be soon 😊
 – Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler” problems

• Recursion more powerful than loops
 – We won’t use a single loop in ML
 – Loops often (not always) obscure simple, elegant solutions
How to talk about functions precisely?
3 Step ML Language Construct Recipe
3 Step ML Language Construct Recipe

1. Syntax
 – How do we write programs with this construct?

2. Typechecking Rules (Static Semantics)
 – When is use of this construct well typed?

3. Evaluation (Dynamic Semantics)
 – What happens when I run this construct?
Function bindings: 3 step recipe

1. Syntax: `fun x0 (x1 : t1, ... , xn : tn) = e`
 – (Will generalize in later lecture)

3. Evaluation: **A function is a value!** (No evaluation yet)
 – Adds `x0` to environment so _later_ expressions can _call_ it
 – (Function-call semantics will also allow recursion)

2. Type-checking:
 – Adds binding `x0 : (t1 * ... * tn) -> t` if:
 – Can type-check body `e` to have type `t` in the static environment containing:
 • “Enclosing” static environment (earlier bindings)
 • `x1 : t1, ... , xn : tn` (arguments with their types)
 • `x0 : (t1 * ... * tn) -> t` (for recursion)
More on type-checking

fun x0 (x1 : t1, ..., xn : tn) = e

• New kind of type: \((t_1 * \ldots * t_n) \rightarrow t\)
 – Result type on right
 – The overall type-checking result is to give \(x_0\) this type in rest of program (unlike Java, not for earlier bindings)
 – Arguments can be used only in \(e\) (unsurprising)

• Because evaluation of a call to \(x_0\) will return result of evaluating \(e\), the return type of \(x_0\) is the type of \(e\)

• The type-checker “magically” figures out \(t\) if such a \(t\) exists
 – Later lecture: Requires some cleverness due to recursion
 – More magic after hw1: Later can omit argument types too
Function Calls

A new kind of expression: 3 questions

1. Syntax: \(e_0 (e_1, \ldots, e_n) \)
 - (Will generalize later)
 - Parentheses optional if there is exactly one argument

2. Type-checking:
 If:
 - \(e_0 \) has some type \((t_1 \ast \ldots \ast t_n) \rightarrow t\)
 - \(e_1 \) has type \(t_1 \), \ldots, \(e_n \) has type \(t_n \)
 Then:
 - \(e_0 (e_1, \ldots, e_n) \) has type \(t \)

Example: \(\text{pow}(x, y-1) \) in previous example has type \text{int} \)
3. Evaluation:

A. (Under current dynamic environment,) evaluate e_0 to a function $\text{fun } x_0 \ (x_1 : t_1, \ldots, x_n : t_n) = e$
 - Since call type-checked, result will be a function

B. (Under current dynamic environment,) evaluate arguments to values v_1, \ldots, v_n

C. Result is evaluation of e in an environment extended to map x_1 to v_1, \ldots, x_n to v_n
 - (“An environment” is actually the environment where the function was defined, and includes x_0 for recursion)
Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
 – Now ways to build up data with multiple parts
 – This is essential
 – Java examples: classes with fields, arrays

Now:
 – Tuples: fixed “number of pieces” that may have different types

Then:
 – Lists: any “number of pieces” that all have the same type

Later:
 – Other more general ways to create compound data
Pairs (2-tuples)

Need a way to *build* pairs and a way to *access* the pieces

Build:

1. **Syntax:** \((e_1, e_2)\)

2. **Type-checking:** If \(e_1\) has type \(ta\) and \(e_2\) has type \(tb\), then the pair expression has type \(ta * tb\)
 - A new kind of type

3. **Evaluation:** Evaluate \(e_1\) to \(v_1\) and \(e_2\) to \(v_2\); result is \((v_1, v_2)\)
 - A pair of values is a value

Pairs (2-tuples)

Need a way to *build* pairs and a way to *access* the pieces

Access:

1. Syntax: \(\#1 \ e\) and \(\#2 \ e\)

2. Type-checking: If \(e\) has type \(ta \times tb\), then \(\#1 \ e\) has type \(ta\) and \(\#2 \ e\) has type \(tb\)

3. Evaluation: Evaluate \(e\) to a pair of values and return first or second piece
 - Example: If \(e\) is a variable \(x\), then look up \(x\) in environment
Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Access:

1. Syntax: \#1 e and \#2 e

2. Type-checking: If e has type ta * tb and \#2 e has type ta, then \#1 e has type ta and \#2 e has type tb

3. Evaluation: Evaluate e to a pair of values and return first or second piece
 – Example: If e is a variable x, then look up x in environment

Will this work?!
Examples

Functions can take and return pairs

fun swap (pr : int*bool) =
 (#2 pr, #1 pr)

fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
 (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y : int) =
 (x div y, x mod y)

fun sort_pair (pr : int*int) =
 if (#1 pr) < (#2 pr)
 then pr
 else (#2 pr, #1 pr)
Tuples

Actually, you can have *tuples* with more than two parts

- A new feature: a generalization of pairs

 - (e₁,e₂,…,eₙ)
 - ta * tb * … * tn
 - #₁ e, #₂ e, #₃ e, …

Homework 1 uses triples of type `int*int*int` a lot
Nesting

Pairs and tuples can be nested however you want
 – Not a new feature: implied by the syntax and semantics

val x1 = (7,(true,9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1) (* bool *)
val x3 = (#2 x1) (* bool*int *)
val x4 = (((3,5),((4,8),(0,0))))
 (* (int*int)*((int*int)*((int*int)) *)

‌
Nesting

Should this be true?

\[(1, (2, 3)) = ((1, 2), 3)\]
Lists

• Despite nested tuples, the type of a variable still “commits” to a particular “amount” of data

In contrast, a list:
 – Can have any number of elements
 – But all list elements have the same type

Need ways to build lists and access the pieces…
Building Lists

• The empty list is a value:

 \[
 \text{[]}
 \]

• In general, a list of values is a value; elements separated by commas:

 \[v_1, v_2, \ldots, v_n\]

• If \(e_1\) evaluates to \(v\) and \(e_2\) evaluates to a list \([v_1, \ldots, v_n]\), then \(e_1::e_2\) evaluates to \([v, \ldots, v_n]\)

 \(e_1::e_2\) (* pronounced “cons” *)
Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

- **null e** evaluates to `true` if and only if `e` evaluates to `[]`

- If `e` evaluates to `[v1, v2, ..., vn]` then **hd e** evaluates to `v1`
 - (raise exception if `e` evaluates to `[]`)

- If `e` evaluates to `[v1, v2, ..., vn]` then **tl e** evaluates to `[v2, ..., vn]`
 - (raise exception if `e` evaluates to `[]`)
 - Notice result is a list
Type-checking list operations

Lots of new types: For any type \(t \), the type \(t \text{ list} \) describes lists where all elements have type \(t \)

- Examples: \(\text{int list} \) \(\text{bool list} \) \(\text{int list list} \) \(\text{(int * int) list} \) \(\text{(int list * int) list} \)

- So \([] \) can have type \(t \text{ list list} \) for any type
 - SML uses type `\('a \text{ list} \)` to indicate this ("tick a" or "alpha")
- For \(e_1: :e_2 \) to type-check, we need a \(t \) such that \(e_1 \) has type \(t \) and \(e_2 \) has type \(t \text{ list} \). Then the result type is \(t \text{ list} \)

- \(\text{null} : 'a \text{ list} \to \text{bool} \)
- \(\text{hd} : 'a \text{ list} \to 'a \)
- \(\text{tl} : 'a \text{ list} \to 'a \text{ list} \)
Example list functions

fun sum_list (xs : int list) =
 if null xs
 then 0
 else hd(xs) + sum_list(tl(xs))

fun countdown (x : int) =
 if x=0
 then []
 else x :: countdown (x-1)

fun append (xs : int list, ys : int list) =
 if null xs
 then ys
 else hd (xs) :: append (tl(xs), ys)
Recursion again

Functions over lists are usually recursive
 – Only way to “get to all the elements”
• What should the answer be for the empty list?
• What should the answer be for a non-empty list?
 – Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
 – You create a list out of smaller lists
Lists of pairs

Processing lists of pairs requires no new features. Examples:

```ocaml
fun sum_pair_list (xs : (int*int) list) = 
  if null xs 
  then 0 
  else #1(hd xs) + #2(hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int*int) list) = 
  if null xs 
  then [] 
  else #1(hd xs) :: firsts(tl xs)

fun seconds (xs : (int*int) list) = 
  if null xs 
  then [] 
  else #2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 (xs : (int*int) list) = 
  (sum_list (firsts xs)) + (sum_list (seconds xs))
```