Name:

CSE 341 : Programming Languages
Midterm, Spring 2014

Please do not turn the page until 12:30.
Rules:

e Closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

e Please stop promptly at 1:20.

e You can separate pages, but please staple them back together before you leave.
e There are 100 points total, distributed unevenly among 6 questions.

e \When writing code, style matters, but don't worry too much about indentation.

Advice:

e Read questions carefully. Understand a question before you start writing.

e Write down thoughts and intermediate steps so you can get partial credit.

e The questions are not in order of difficulty. Skip around. Get to all the problems.
e If you have questions, ask.

e Don’'t worry too much; you're here to learn. You are smart and can totally do this!!!



1. (25 points) In this question we will use map and fold over lists to implement tmap and
tfold over variable arity trees. Assume these implementations of map and fold for lists:

(* map : (‘a -> ‘b) -> ‘a list -> ‘b list *)
fun map £ [] = []
| map £ (h::t) = f h :: map £ t
(* fold : ('a -=> ‘b -> ‘b) -> ‘b -> ‘a list -> ‘b *)
fun fold f base [] = base
| fold f base (h::t) = £ h (fold f base t)

Consider this implementation of variable arity trees:
datatype ‘a tree = Node of ‘a * (‘a tree list)
How should we fill in the blank to map function £ over an entire tree?

(* tmap : (‘a -> ‘b) -> ‘a tree -> ‘b tree *)
fun tmap f (Node (x, ts)) =

(9 points) Circle the correct way to fill in the blank (only one of the options is correct):
(a) map £ (x :: tmap f ts)
(b) Node (f x, map f (tmap ts))
(c¢) map £ (tmap f (x :: ts))
(d) Node (f x, tmap (map f) ts)
(e) Node (f x, map (tmap f) ts)

(f) map £ (x :: (tmap map) f ts)



How should we fill in the blank to fold function £ with base over an entire tree?

(* tfold : (a -=> b -> Yb) -> ‘b -> ‘a tree -> ‘b *)
fun tfold f base (Node (x, ts)) =

(9 points) Circle the correct way to fill in the blank (only one of the options is correct):
(a) £ x (tfold (fold (fn t => fn acc => f t acc) base ts)
(b) £ x (fold (fn acc => fn t => tfold f acc t) ts base)
(c) Node (x, tfold £ (fold (tfold f) ts))
(d) £ x (fold (fn t => fn acc => tfold f acc t) base ts)
(e) £ x (tfold (fn t => fn acc => fold f t acc) base ts)
(f) Node (f x, fold (tfold f) base ts)

(4 points) Use foldt and the add function below to fill in the blank for sumt, a function which
adds up all the ints in an int tree. Note that sumt uses a val binding!

fun add a b = a + b

val sumt =

(3 points) Fill in the blank to show the type of sumt:

sumt




2. (15 points) Rewrite this function to be tail recursive (keep the same order!):

=[]

fun pairUp x []
| pairUp x (h::t) = (x, h) :: pairUp x t

Reuwrite this function to be tail recursive (keep the same order!):

fun xprod [] ys = []
| xprod (x::xs) ys = pairUp x ys @ xprod xs ys



3. (15 points) Consider the following datatype:
datatype SkipList = Null | Node of int * SkipList * SkipList

We can use SkipList to represent lists where we can “skip ahead” to later parts of a list. For
example the bindings below represent the following list:

h

val n6 = Node
val nb5 = Node

(6, Null, Null)

(
val n4 = Node (

(

(

(

6

5, n6, Null)

4, n5, no)
val n3 = Node (3, n4, Null)
val n2 = Node (2
1

val nl = Node

, n3, Null)
, n2, n3)
Consider these two functions which attempt to flatten a SkipList into an ordinary list:

fun flatten slist =
case slist of

Node (x, sll, sl12) => x :: (flatten sl1l2)
| Node (x, sll, Null) => x :: (flatten sll)
| Null => []

exception NullListError

fun flatten again slist =
case slist of
Node (x, sll, Node(a, b, c)) => x :: (flatten again sll)
| Node(x, sll, Null) => x :: (flatten again sll)
| Node (x, Null, Null) => [0]
| Null => raise NulllListError



(6 points) Assuming the implementation of fo1d and add from Problem #1 and the definitions
above, what value will sum1 be bound to below? If sum1 will fail to evaluate due to an uncaught
exception, write the name of the thrown exception in the blank.

val suml = fold add 0 (flatten nl)

sum1 =

What value will sum2 be bound to below? If sum1 will fail to evaluate due to an uncaught
exception, write the name of the thrown exception in the blank.

val sum2 = fold add 0 (flatten again nl)

sum2 =

(5 points) Provide a SkipList built with the Node constructor that will cause f1latten again to
throw an exception, or if that is not possible explain why.

(4 points) Using all the same lines in f1atten, but in a different order, write a function
flatten yet againsuchthat flatten yet again nl evaluatesto [1, 3, 4, 6]:

fun flatten yet again slist =




4. (15 points) This question has three parts. We treat each part as though it were in its own
separate namespace: bindings defined in previous parts are not valid in subsequent parts.

(5 points) Assuming the implementation of map from Problem #1, what is ans bound to after this
code executes?

val (a, b)
val addl
val timesb5

(2, 4)

(fn x => x + 1)
(fn x => x * 5H)
(fn x => x * Xx)

val square =

fun £ x y z =

let
val g = (fn (a, b') => a b)
in
Yy 9 X
end
val foo = [(addl, true), (timesb5, false), (square, true)]
val ans = £ foo map (fn x => [x, x])

ans =

(5 points) Consider the following bindings. What will ans be bound to after this code executes?

val (a, b, ¢, %, y) = (2, 4, 6, 8, 10)
fun £ x y =
(let
val x = vy
val b = a
val b = Db
in
c *b -Db

ans =




(5 points) Consider the following two bindings:
fun h £ = fn x => f x * f x
val v=h (h (h (fn y => vy * y)))

Is v anint or a function? If itis an int, write its value. If itis a function, write its type and
describe what the function computes.

(Optional bonus problem: 3 extra credit points) The bindings below define an int called num,
and four functions called f, g, h, and factorial, where factorial is the familiar factorial function.
Using each of f, g, h, factorial, and num exactly once, write an expression in the blank that will
make it so that ans is bound to the factorial of num.

Il
o

val num

fun £f abcd=D>badc
fun gabc=cab
fun h a b = b a
fun factorial 0 = 1
| factorial n = n * factorial (n - 1)

ans =




5. (15 points) Consider this program:
val x = ref 0

fun foo y =

let
val = x := (!lx + 1);
val = print (Int.toString (!x) ~ " ")
in
'x + vy
end
val = print (Int.toString (foo 1) ~ " ")
val = print (Int.toString (foo 1) ~ " ")
val = x :=5
val = print (Int.toString (foo 1) ~ " M)

val x = ref 10
val = print (Int.toString (foo 1) ~ ™ ™)

(8 points) What will it print? (Only one option is correct.)

(a) 01 125¢667



Now consider this program:

fun bar y =
let
val z = ref O
val =1z := !z + 1
val = print (Int.toString (lz) ~ " ")
in
'z + 4
end
val = print (Int.toString (bar 1) ~ " ")
val = print (Int.toString (bar 1) ~ " ")
val z = ref 10
val = print (Int.toString (bar 1) ~ " ")

(7 points) What will it print? (Only one option is correct.)

(a) 011223

(c) 1 2 2 3 11 12

(d) 1 21 2 11 12



6. (15 points) Implement a module satisfying this signature:

signature STACK = sig
type ‘a t
exception Empty
val empty : ‘a t
val push : ‘a -> ‘a t -> ‘a t
val pop : 'at -> ‘a* ‘at
end

Your implementation should satisfy the following two properties:

(1) pop empty should raise the Empty exception
(2) pop (push x stack) should return (x, stack)

(Hint: use lists!)



