
Double Dispatch Expression Problem Mixins Visitors

CSE341 – Section 9
Double Dispatch, Expression Problem, Mixins, and More!

Cody Schroeder

March 7th, 2013

Cody Schroeder CSE341 – Section 9

Double Dispatch Expression Problem Mixins Visitors

Outline

1 Double Dispatch
What? What?
Emulating Double Dispatch

2 Expression Problem
The Table
Examples

3 Mixins
Intro
Standard Mixins

4 Visitors
Visitor Pattern

Cody Schroeder CSE341 – Section 9

Double Dispatch Expression Problem Mixins Visitors What? What? Emulating Double Dispatch

General Look

Dispatch is the runtime procedure for looking up which
function to call based on the parameters given.

What is Ruby’s procedure? (Same as Java’s)
Single Dispatch on the implicit self parameter.

They use the runtime class of the self parameter to lookup
the correct method when a call is made.
This is CSE143.

Single Dispatch isn’t the only possible choice, though.
What about dispatching based on the runtime classes of both
self and the first method parameter?

This is generally known as Double Dispatch.
Ruby/Java doesn’t have this, but we can emulate it.
This is HW7.

Future Look: You can dispatch on any number of the parameters and the
general term for this is Multiple Dispatch or Multimethods.

Cody Schroeder CSE341 – Section 9

Double Dispatch Expression Problem Mixins Visitors What? What? Emulating Double Dispatch

Emulating Double Dispatch

The key idea to emulating double dispatch in Ruby, and on
HW7, is use the built-in single dispatch procedure twice!

Sounds simple when put that way, doesn’t it?
Have the principal method immediately call another method on
its first parameter, passing in self.

That second call will implicitly know the class of the self
parameter.
It will also know the class of the first parameter of the
principal method because of Single Dispatch.

Of course, there are other ways to emulate double dispatch.
It’s often found as an idiom in SML by using case expressions.

Cody Schroeder CSE341 – Section 9

Double Dispatch Expression Problem Mixins Visitors What? What? Emulating Double Dispatch

Simple Example

class A
def f x

x.fWithA self
end
def fWithA a

"(a, a) case"
end
def fWithB b

"(b, a) case"
end

end

class B
def f x

x.fWithB self
end
def fWithA a

"(a, b) case"
end
def fWithB b

"(b, b) case"
end

end

A.new.f(A.new) # "(a, a) case"
A.new.f(B.new) # "(a, b) case"
B.new.f(A.new) # "(b, a) case"
B.new.f(B.new) # "(b, b) case"

Cody Schroeder CSE341 – Section 9

Double Dispatch Expression Problem Mixins Visitors What? What? Emulating Double Dispatch

Simple Example (SML)

datatype t = A | B

fun f x y =
case (x, y) of

(A, A) => "(a, a) case"
| (A, B) => "(a, b) case"
| (B, A) => "(b, a) case"
| (B, B) => "(b, b) case"

f A A; (∗ "(a, a) case" ∗)
f A B; (∗ "(a, b) case" ∗)
f B A; (∗ "(b, a) case" ∗)
f B B; (∗ "(b, b) case" ∗)

Cody Schroeder CSE341 – Section 9

Double Dispatch Expression Problem Mixins Visitors What? What? Emulating Double Dispatch

Rock/Paper/Scissors Example

We have three classes {Rock, Paper, Scissors}
We want to write a fight method that returns a winner
between the type of self and another {Rock, Paper, Scissors}

SML Version

fun fight w1 w2 =
case (w1, w2) of

(Paper p, Rock _) => wins p
| (Rock r, Scissors _) => wins r
| (Scissors s, Paper _) => wins s
| (Rock _, Paper p) => wins p
| (Scissors _, Rock r) => wins r
| (Paper _, Scissors s) => wins s
| _ => tie;

Cody Schroeder CSE341 – Section 9

Double Dispatch Expression Problem Mixins Visitors The Table Examples

The Expression Problem

Problem: Where do we put the code for each cell?
How do we group the code together?

By columns??? *OR* By rows???

OpA OpB OpC OpD
TypeA
TypeB
TypeC
TypeD

This can be distilled down into an OOP vs FP argument. . .
OOP generally groups by row (by types/classes)

Preferable if more likely to add types rather than operations
FP generally groups by column (by operations/functions)

Preferable if more likely to add operations rather than types

Cody Schroeder CSE341 – Section 9

Double Dispatch Expression Problem Mixins Visitors The Table Examples

Examples

Rock/Paper/Scissors

fight to_s
Rock
Paper
Scissors

Ruby (OOP): By rows (classes)
SML (FP): By columns (functions)

lec22_stageC.rb

Same idea, just more complicated operations!

Cody Schroeder CSE341 – Section 9

Double Dispatch Expression Problem Mixins Visitors Intro Standard Mixins

Mixins Motivation

Look at all of these cool methods on every object!
There seems to be a lot of recurring methods, though.

Is that implemented by code reuse or redundant code?
Maybe they have a common ancestor and use inheritance?
But what about String and FixNum?

Nearest common ancestors is Object, but Objects don’t
generally have <=>, <, . . . among other methods in common.
Inheritance doesn’t work here, but we still want to reuse code

Mixins are a Ruby construct that is simply for code reuse
Perfect for sharing code between otherwise unrelated classes

Code Examples

Sees mixins.rb.

Cody Schroeder CSE341 – Section 9

Double Dispatch Expression Problem Mixins Visitors Intro Standard Mixins

Working with Mixins

Defining a Mixin

module MixinNameHere
def method1

do stuff
end
def method2(x,y,z) # Any arguments...

method1 # Calling above method (ignoring shadowing)
someOtherMethod # This is not in the mixin

end
end

Utilizing a Mixin

class SomeClass
include MixinNameHere

end

Cody Schroeder CSE341 – Section 9

Double Dispatch Expression Problem Mixins Visitors Intro Standard Mixins

Standard Mixins

Comparable Mixin

All of these methods depend on a single method named <=>
If Dan asks. . . say that I called it the spaceship operator.

It’s almost the same as Comparable#compareTo from Java
The return is restricted to the values {-1,0,1}

0 <=> 5 # −1
"ab" <=> "a" # 1 (lexicographical ordering)
[1,2] <=> [1,2] # 0 (analogous to Strings)

Enumerable Mixin

Awesomeness within a Module (contains 47 methods)!!!!
All depends on the each method that we’ve discussed

Cody Schroeder CSE341 – Section 9

Double Dispatch Expression Problem Mixins Visitors Visitor Pattern

Visitor Pattern

A template for handling a functional composition in OOP.
OOP wants to group code by classes
We want code grouped by functions

This makes it easier to add operations at a later time.

Relies on Double Dispatch!!!
Dispatch based on (VisitorType, ValueType) pairs.

Often used to compute over AST’s (abstract syntax trees)
Heavily used in compilers

Remember visitPostOrder???

Code Examples

See visitor.rb and visitor.sml.

Cody Schroeder CSE341 – Section 9

