CSE341 — Section 7
ASTs, Interpreters, MUPL

Sunjay Cauligi

February 21, 2013

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

Legal vs. Nonlegal ASTs

Consider the Following

(add 3 4)
(add (const 3) (const 4))
(add (const 3) (bool #t))

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

Legal vs. Nonlegal ASTs

Consider the Following

(add 3 4)
(add (const 3) (const 4))
(add (const 3) (bool #t))

@ Syntax vs. semantics

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

Legal vs. Nonlegal ASTs

Consider the Following

(add 3 4)
(add (const 3) (const 4))
(add (const 3) (bool #t))

@ Syntax vs. semantics

@ No need to check for syntax

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

Legal vs. Nonlegal ASTs

Consider the Following

(add 3 4)
(add (const 3) (const 4))
(add (const 3) (bool #t))

@ Syntax vs. semantics

@ No need to check for syntax

@ Must check semantics

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs

Checking Semantics

add
N

const const

| |
3 4

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

Checking Semantics

add
/\

const 3 const

|
4

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

Checking Semantics

add

S

const 3 const 4

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs

Checking Semantics

const 7

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

Checking Semantics

const 7

add
/\

const bool

\ \
3 4t

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

Checking Semantics

const 7

add
const 3 bool

|
#t

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

Checking Semantics

const 7

add

const 3 bool #t

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

Checking Semantics

const 7

Error: add applied to non-number!

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

Valid Assumptions

Allowed to Assume

@ Input AST is “valid”
@ Each node in AST has right “types”

e Remember that nodes such as add and multiply take ASTs,
not numbers!

@ lllegal input ASTs may crash the interpreter — this is OK

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

Valid Assumptions

Allowed to Assume

@ Input AST is “valid”
@ Each node in AST has right “types”

e Remember that nodes such as add and multiply take ASTs,
not numbers!

@ lllegal input ASTs may crash the interpreter — this is OK

Need to Check

@ Return types from subexpressions

o E.g. (add (const 3) (bool #t)) is a legal AST, but has a
wrong value being passed to add

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

Reviewing Macros

What is a Macro?

e Extends language syntax (allows new constructs)

e Written in terms of existing syntax

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

Reviewing Macros

What is a Macro?

e Extends language syntax (allows new constructs)
e Written in terms of existing syntax

e Expanded before language is actually interpreted /compiled

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

MUPL “Macros”

A Clever Trick

@ Interpreting MUPL using Racket
@ MUPL is represented as Racket structs

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

MUPL “Macros”

A Clever Trick

@ Interpreting MUPL using Racket
@ MUPL is represented as Racket structs
e In Racket, these are just more data types

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

MUPL “Macros”

A Clever Trick

@ Interpreting MUPL using Racket

@ MUPL is represented as Racket structs
e In Racket, these are just more data types

@ Why not write a Racket function that returns MUPL ASTs?

Sunjay Cauligi CSE341 — Section 7

Writing Interpreters Legal/Nonlegal ASTs Pseudo-Macros

MUPL “Macros”

A Clever Trick

@ Interpreting MUPL using Racket

@ MUPL is represented as Racket structs
e In Racket, these are just more data types

@ Why not write a Racket function that returns MUPL ASTs?

Note on Hygiene

Implementing “macros” in this manner doesn’t give very good
macro hygiene

Sunjay Cauligi CSE341 — Section 7

Racket eval Quoting in Racket Eval in Racket

Racket's quote function

Quoting a Set of Tokens

@ Syntactically, Racket statements can be thought of as lists of
tokens

@ (+ 3 4) is a plus sign, a ‘3’, and a ‘4’

Sunjay Cauligi CSE341 — Section 7

Racket eval Quoting in Racket Eval in Racket

Racket's quote function

Quoting a Set of Tokens

@ Syntactically, Racket statements can be thought of as lists of
tokens

@ (+ 3 4) is a plus sign, a ‘3’, and a ‘4’

@ quote-ing a parenthesized expression produces a list of tokens

Sunjay Cauligi CSE341 — Section 7

Racket eval Quoting in Racket Eval in Racket

Racket's quote function

Quoting a Set of Tokens

@ Syntactically, Racket statements can be thought of as lists of
tokens

@ (+ 3 4) is a plus sign, a ‘3’, and a ‘4’

@ quote-ing a parenthesized expression produces a list of tokens

(+34) =7

(quote (+ 3 4)) => '(+ 3 4)
(quote (+ 3 #t)) => '(+ 3 #t)
(+ 3 #t) => Error

Sunjay Cauligi CSE341 — Section 7

Racket eval Quoting in Racket Eval in Racket

Self Interpretation

Notes on “eval”

@ Many languages provide an eval function or something similar
@ Performs interpretation/compilation at runtime

Sunjay Cauligi CSE341 — Section 7

Racket eval Quoting acket Eval in Racket

Self Interpretation

Notes on “eval”

@ Many languages provide an eval function or something similar
@ Performs interpretation/compilation at runtime
o Needs full language implementation during runtime

Sunjay Cauligi CSE341 — Section 7

Racket eval Quoting in Racket Eval in Racket

Self Interpretation

Notes on “eval”

@ Many languages provide an eval function or something similar
@ Performs interpretation/compilation at runtime
o Needs full language implementation during runtime

Use of eval

o It's useful, but there's usually a better way

@ Makes analysis, debugging difficult

Sunjay Cauligi CSE341 — Section 7

Racket eval Quoting in Racket Eval in Racket

Eval in Racket

Racket’s “eval” function

@ Racket's eval operates on lists of tokens
o Like those generated from quote

Sunjay Cauligi CSE341 — Section 7

Racket eval Quoting in Racket Eval in Racket

Eval in Racket

Racket’s “eval” function

@ Racket's eval operates on lists of tokens
o Like those generated from quote

(define quoted (quote (+ 3 4)))
(eval quoted) => 7

(define bad-quoted (quote (+ 3 #t)))
(eval bad-quoted) => Error

Sunjay Cauligi CSE341 — Section 7

Racket eval Quoting in Racket Eval in Racket

Quasiquoting

@ Inserts evaluated tokens into a “quote”

@ Convenient for generating dynamic token lists

Sunjay Cauligi CSE341 — Section 7

Racket eval Q g et Eval in Racket

Quasiquoting

@ Inserts evaluated tokens into a “quote”

@ Convenient for generating dynamic token lists

(quasiquote (+ 3 (unquote (+ 2 2)))) => '(+ 3 4)
(quasiquote (+ 3 (unquote (quote (I love CSE 338))))) => '(+ 3 (I love CSE 338))

Sunjay Cauligi CSE341 — Section 7

Racket eval Quoting in Racket Eval in Racket

Quasiquoting

@ Inserts evaluated tokens into a “quote”

@ Convenient for generating dynamic token lists

(quasiquote (+ 3 (unquote (+ 2 2)))) => '(+ 3 4)
(quasiquote (+ 3 (unquote (quote (I love CSE 338))))) => '(+ 3 (I love CSE 338))

(quasiquote (+ (unquote (eval (quote (- 5 2))))
(unquote (eval (quasiquote (+ (unquote (/ 4 2)) 2)))))) => '(+ 3 4)

Sunjay Cauligi CSE341 — Section 7

Cute Little Typographical Shortcuts

'(a b c) <=> (quote (a b c))
“(ab ,(+ 2 2) d <=>

(quasiquote (a b (unquote (+ 2 2)) d))
A (x) (+ x 1)) <=> (lambda (x) (+ x 1))

Sunjay Cauligi CSE341 — Section 7

	Writing Interpreters
	Legal/Nonlegal ASTs
	Pseudo-Macros

	Racket eval
	Quoting in Racket
	Eval in Racket

