
Writing Interpreters Racket eval

CSE341 – Section 7
ASTs, Interpreters, MUPL

Sunjay Cauligi

February 21st, 2013

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

Legal vs. Nonlegal ASTs

Consider the Following

(add 3 4)
(add (const 3) (const 4))
(add (const 3) (bool #t))

Syntax vs. semantics

No need to check for syntax

Must check semantics

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

Legal vs. Nonlegal ASTs

Consider the Following

(add 3 4)
(add (const 3) (const 4))
(add (const 3) (bool #t))

Syntax vs. semantics

No need to check for syntax

Must check semantics

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

Legal vs. Nonlegal ASTs

Consider the Following

(add 3 4)
(add (const 3) (const 4))
(add (const 3) (bool #t))

Syntax vs. semantics

No need to check for syntax

Must check semantics

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

Legal vs. Nonlegal ASTs

Consider the Following

(add 3 4)
(add (const 3) (const 4))
(add (const 3) (bool #t))

Syntax vs. semantics

No need to check for syntax

Must check semantics

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

Checking Semantics

Nice Case

add

const

3

const

4

Not Nice Case

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

Checking Semantics

Nice Case

add

const 3 const

4

Not Nice Case

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

Checking Semantics

Nice Case

add

const 3 const 4

Not Nice Case

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

Checking Semantics

Nice Case

const 7

Not Nice Case

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

Checking Semantics

Nice Case

const 7

Not Nice Case

add

const

3

bool

#t

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

Checking Semantics

Nice Case

const 7

Not Nice Case

add

const 3 bool

#t

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

Checking Semantics

Nice Case

const 7

Not Nice Case

add

const 3 bool #t

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

Checking Semantics

Nice Case

const 7

Not Nice Case

Error: add applied to non-number!

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

Valid Assumptions

Allowed to Assume

Input AST is “valid”

Each node in AST has right “types”

Remember that nodes such as add and multiply take ASTs,
not numbers!

Illegal input ASTs may crash the interpreter – this is OK

Need to Check

Return types from subexpressions

E.g. (add (const 3) (bool #t)) is a legal AST, but has a
wrong value being passed to add

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

Valid Assumptions

Allowed to Assume

Input AST is “valid”

Each node in AST has right “types”

Remember that nodes such as add and multiply take ASTs,
not numbers!

Illegal input ASTs may crash the interpreter – this is OK

Need to Check

Return types from subexpressions

E.g. (add (const 3) (bool #t)) is a legal AST, but has a
wrong value being passed to add

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

Reviewing Macros

What is a Macro?

Extends language syntax (allows new constructs)

Written in terms of existing syntax

Expanded before language is actually interpreted/compiled

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

Reviewing Macros

What is a Macro?

Extends language syntax (allows new constructs)

Written in terms of existing syntax

Expanded before language is actually interpreted/compiled

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

MUPL “Macros”

A Clever Trick

Interpreting MUPL using Racket

MUPL is represented as Racket structs

In Racket, these are just more data types

Why not write a Racket function that returns MUPL ASTs?

Note on Hygiene

Implementing “macros” in this manner doesn’t give very good
macro hygiene

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

MUPL “Macros”

A Clever Trick

Interpreting MUPL using Racket

MUPL is represented as Racket structs

In Racket, these are just more data types

Why not write a Racket function that returns MUPL ASTs?

Note on Hygiene

Implementing “macros” in this manner doesn’t give very good
macro hygiene

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

MUPL “Macros”

A Clever Trick

Interpreting MUPL using Racket

MUPL is represented as Racket structs

In Racket, these are just more data types

Why not write a Racket function that returns MUPL ASTs?

Note on Hygiene

Implementing “macros” in this manner doesn’t give very good
macro hygiene

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Legal/Nonlegal ASTs Pseudo-Macros

MUPL “Macros”

A Clever Trick

Interpreting MUPL using Racket

MUPL is represented as Racket structs

In Racket, these are just more data types

Why not write a Racket function that returns MUPL ASTs?

Note on Hygiene

Implementing “macros” in this manner doesn’t give very good
macro hygiene

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Quoting in Racket Eval in Racket

Racket’s quote function

Quoting a Set of Tokens

Syntactically, Racket statements can be thought of as lists of
tokens

(+ 3 4) is a plus sign, a ‘3’, and a ‘4’

quote-ing a parenthesized expression produces a list of tokens

Examples

(+ 3 4) => 7

(quote (+ 3 4)) => '(+ 3 4)

(quote (+ 3 #t)) => '(+ 3 #t)

(+ 3 #t) => Error

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Quoting in Racket Eval in Racket

Racket’s quote function

Quoting a Set of Tokens

Syntactically, Racket statements can be thought of as lists of
tokens

(+ 3 4) is a plus sign, a ‘3’, and a ‘4’

quote-ing a parenthesized expression produces a list of tokens

Examples

(+ 3 4) => 7

(quote (+ 3 4)) => '(+ 3 4)

(quote (+ 3 #t)) => '(+ 3 #t)

(+ 3 #t) => Error

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Quoting in Racket Eval in Racket

Racket’s quote function

Quoting a Set of Tokens

Syntactically, Racket statements can be thought of as lists of
tokens

(+ 3 4) is a plus sign, a ‘3’, and a ‘4’

quote-ing a parenthesized expression produces a list of tokens

Examples

(+ 3 4) => 7

(quote (+ 3 4)) => '(+ 3 4)

(quote (+ 3 #t)) => '(+ 3 #t)

(+ 3 #t) => Error

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Quoting in Racket Eval in Racket

Self Interpretation

Notes on “eval”

Many languages provide an eval function or something similar

Performs interpretation/compilation at runtime

Needs full language implementation during runtime

Use of eval

It’s useful, but there’s usually a better way

Makes analysis, debugging difficult

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Quoting in Racket Eval in Racket

Self Interpretation

Notes on “eval”

Many languages provide an eval function or something similar

Performs interpretation/compilation at runtime

Needs full language implementation during runtime

Use of eval

It’s useful, but there’s usually a better way

Makes analysis, debugging difficult

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Quoting in Racket Eval in Racket

Self Interpretation

Notes on “eval”

Many languages provide an eval function or something similar

Performs interpretation/compilation at runtime

Needs full language implementation during runtime

Use of eval

It’s useful, but there’s usually a better way

Makes analysis, debugging difficult

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Quoting in Racket Eval in Racket

Eval in Racket

Racket’s “eval” function

Racket’s eval operates on lists of tokens

Like those generated from quote

Examples

(define quoted (quote (+ 3 4)))

(eval quoted) => 7

(define bad-quoted (quote (+ 3 #t)))

(eval bad-quoted) => Error

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Quoting in Racket Eval in Racket

Eval in Racket

Racket’s “eval” function

Racket’s eval operates on lists of tokens

Like those generated from quote

Examples

(define quoted (quote (+ 3 4)))

(eval quoted) => 7

(define bad-quoted (quote (+ 3 #t)))

(eval bad-quoted) => Error

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Quoting in Racket Eval in Racket

Quasiquoting

Quasiquoting

Inserts evaluated tokens into a “quote”

Convenient for generating dynamic token lists

Examples

(quasiquote (+ 3 (unquote (+ 2 2)))) => '(+ 3 4)

(quasiquote (+ 3 (unquote (quote (I love CSE 338))))) => '(+ 3 (I love CSE 338))

(quasiquote (+ (unquote (eval (quote (- 5 2))))

(unquote (eval (quasiquote (+ (unquote (/ 4 2)) 2)))))) => '(+ 3 4)

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Quoting in Racket Eval in Racket

Quasiquoting

Quasiquoting

Inserts evaluated tokens into a “quote”

Convenient for generating dynamic token lists

Examples

(quasiquote (+ 3 (unquote (+ 2 2)))) => '(+ 3 4)

(quasiquote (+ 3 (unquote (quote (I love CSE 338))))) => '(+ 3 (I love CSE 338))

(quasiquote (+ (unquote (eval (quote (- 5 2))))

(unquote (eval (quasiquote (+ (unquote (/ 4 2)) 2)))))) => '(+ 3 4)

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval Quoting in Racket Eval in Racket

Quasiquoting

Quasiquoting

Inserts evaluated tokens into a “quote”

Convenient for generating dynamic token lists

Examples

(quasiquote (+ 3 (unquote (+ 2 2)))) => '(+ 3 4)

(quasiquote (+ 3 (unquote (quote (I love CSE 338))))) => '(+ 3 (I love CSE 338))

(quasiquote (+ (unquote (eval (quote (- 5 2))))

(unquote (eval (quasiquote (+ (unquote (/ 4 2)) 2)))))) => '(+ 3 4)

Sunjay Cauligi CSE341 – Section 7



Writing Interpreters Racket eval

Cute Little Typographical Shortcuts

'(a b c) <=> (quote (a b c))

`(a b ,(+ 2 2) d) <=>

(quasiquote (a b (unquote (+ 2 2)) d))

(λ (x) (+ x 1)) <=> (lambda (x) (+ x 1))

Sunjay Cauligi CSE341 – Section 7


	Writing Interpreters
	Legal/Nonlegal ASTs
	Pseudo-Macros

	Racket eval
	Quoting in Racket
	Eval in Racket


