
SML/Racket Memoization Streams

CSE341 – Section 6
Memoization, Streams, and More

Cody Schroeder

February 13th, 2013

Cody Schroeder CSE341 – Section 6

SML/Racket Memoization Streams

Outline

1 SML/Racket
Refresher
Lexical Scope
Mutation

2 Memoization
Fibonacci
General Memoization

3 Streams
Definition
Working with Streams

Cody Schroeder CSE341 – Section 6

SML/Racket Memoization Streams Refresher Lexical Scope Mutation

Refresher

Racket Fibonacci

1 (define (fib n)
2 (if (<= n 1)
3 n
4 (+ (fib (- n 1)) (fib (- n 2)))))

SML Fibonacci

1 fun fib n = if n <= 1
2 then n
3 else fib (n-1) + fib (n-2)

SML and Racket aren’t so different a lot of the time.
A lot of what we learned in SML will transfer over.

For instance, dealing with lists is very similar.
Functional constructs are still frequently used.

Cody Schroeder CSE341 – Section 6

SML/Racket Memoization Streams Refresher Lexical Scope Mutation

Lexical Scope

Variable lookup rules are nearly identical between SML and Racket.
One difference is the top-level letrec in a Racket module.

How do these procedures differ?

Hint: I don’t care about 36 6= 37

1 (define minus-fact-of-36
2 (let ([v (fib 36)])
3 (lambda (x)
4 (- x v))))
5

6 (define minus-fact-of-37
7 (lambda (x)
8 (let ([v (fib 37)])
9 (- x v))))

Computes (fib 36) once

Computes (fib 37) every call

Cody Schroeder CSE341 – Section 6

SML/Racket Memoization Streams Refresher Lexical Scope Mutation

Mutation

We care even more about scoping rules in the presence of mutation.

What do these procedures do when called?

1 (define increment-and-return1
2 (let ([v 0])
3 (lambda (x)
4 (begin (set! v (+ x v))
5 v))))
6

7 (define increment-and-return2
8 (lambda (x)
9 (let ([v 0])

10 (begin (set! v (+ x v))
11 v))))

increment-and-return is meant to be a function that keeps a
global counter and increments the counter with x during each call.

Incorrect: will always return x

Cody Schroeder CSE341 – Section 6

SML/Racket Memoization Streams Refresher Lexical Scope Mutation

set! vs set-mcar! and friends

Mutation Functions

In Racket there are multiple functions that have mutation as a
side-effect.

set! assigns to some variable. It updates its value in the
environment.

In Java, analogous to x = 5; (where 5 is just some value)
set-mcar! and set-mcdr! assigns to the fields of a mpair
structure.

car and cdr could be considered fields in a mpair structure
In Java, analogous to x.car = 5; and x.cdr = 10;

See http://docs.racket-lang.org/reference/mpairs.html for a
reference on mpairs.

Cody Schroeder CSE341 – Section 6

SML/Racket Memoization Streams Fibonacci General Memoization

Back to Fibonacci

Why is this procedure slow?

1 (define (fib n)
2 (if (<= n 1)
3 n
4 (+ (fib (- n 1)) (fib (- n 2)))))

Cody Schroeder CSE341 – Section 6

SML/Racket Memoization Streams Fibonacci General Memoization

Visualizing Fibonacci

Calling (fib 4)

(fib 4)

(fib 3)

(fib 2)

(fib 1) (fib 0)

(fib 1)

(fib 2)

(fib 1) (fib 0)

There’s a lot of redundant computation in this implementation.
Cody Schroeder CSE341 – Section 6

SML/Racket Memoization Streams Fibonacci General Memoization

Memoization

Our fibonacci function ends up recomputing many values in
the long run due to the recursive structure of the solution.

How can we fix this? (Other than using an iterative solution. . .)

How about we store already computed results in some sort of
cache?

The cache could be a mutable structure that will be added to
as new results are computed.
This is the idea of memoization!

In the previous tree example, the entire right subtree doesn’t
have to be recomputed. It’ll be found in the cache.
Our fibonacci function will become exponentially faster.

Cody Schroeder CSE341 – Section 6

SML/Racket Memoization Streams Fibonacci General Memoization

Associative Lists

We will use an associative list for our cache.
It’s just a list of key-value pairs.
There’s a library function named assoc that will do lookups on
a key in any valid associative list for us.

Locates the first pair in the list in which its car is equal? to
the requested key value. Returns the entire pair found. If the
key isn’t found, it returns #f.

1 (define a-lst (list (cons 1 2)
2 (cons "Cody" "Schroeder")
3 (cons 42 #t)))
4

5 (displayln (assoc 1 a-lst)) ; (1 . 2)
6 (displayln (assoc "Cody" a-lst)) ; (Cody . Schroeder)
7 (displayln (assoc 42 a-lst)) ; (42 . #t)
8 (displayln (assoc "NON-EXISTANT-KEY" a-lst)) ; #f

Cody Schroeder CSE341 – Section 6

SML/Racket Memoization Streams Fibonacci General Memoization

One Way of Fixing Fibonacci

A Memoized Fibonacci

1 (define fib
2 (let ([memo '((0 . 0) (1 . 1))])
3 (lambda (n)
4 (let ([prev-ans (assoc n memo)])
5 (if prev-ans
6 (cdr prev-ans)
7 (let ([ans (+ (fib (- n 1)) (fib (- n 2)))])
8 (set! memo (cons (cons n ans) memo))
9 ans))))))

How fast can (fib 70000) be computed now?

Cody Schroeder CSE341 – Section 6

SML/Racket Memoization Streams Fibonacci General Memoization

General Memoization

The Basic Pattern

1 (define function-name
2 (let ([memo '()]) ;; memo can store base cases
3 (lambda (x) ;; We could have more arguments, if we wanted.
4 (let ([prev-ans (assoc x memo)]) ;; Check for saved result
5 (if prev-ans
6 (cdr prev-ans) ;; Just return memo'd answer
7 (let ([new-ans (compute x)]) ;; Compute a new answer
8 (set! memo (cons (cons x new-ans) memo)) ;; Save it
9 new-ans)))))) ;; Return the new answer

Cody Schroeder CSE341 – Section 6

SML/Racket Memoization Streams Definition Working with Streams

Stream Definition

A Stream Is. . .

A thunk that evaluates to a pair of an element and another stream.
This is an infinitely recursive definition. There’s no end to a stream.

Example

1 (define natural-numbers
2 (letrec ([next-nat (lambda (n)
3 (lambda () (cons n (next-nat (+ 1 n)))))])
4 (next-nat 1)))

Cody Schroeder CSE341 – Section 6

SML/Racket Memoization Streams Definition Working with Streams

Working with Streams

See code: streams.rkt.

Cody Schroeder CSE341 – Section 6

