(CSE341 — Section 6

Memoization, Streams, and More

Cody Schroeder

February 13", 2013

Cody Schroeder CSE341 — Section 6



© SML/Racket
o Refresher
@ Lexical Scope
@ Mutation

© Memoization
@ Fibonacci
@ General Memoization

© Streams
@ Definition
@ Working with Streams

Cody Schroeder CSE341 — Section 6



Lexical Scope Mutation

Refresher

Racket Fibonacci

(define (fib n)

1

2 (if (<=n 1)

3 n

s (+ (fib (- n 1)) (fib (- n 2)))))

4

SML Fibonacci

1 fun fibn =ifn <=1
2 then n
3 else fib (n-1) + fib (n-2)

o SML and Racket aren’t so different a lot of the time.
@ A lot of what we learned in SML will transfer over.

o For instance, dealing with lists is very similar.
e Functional constructs are still frequently used.

Cody Schroeder CSE341 — Section 6



Refresher Mutation

Lexical Scope

@ Variable lookup rules are nearly identical between SML and Racket.
o One difference is the top-level letrec in a Racket module.

How do these procedures differ?

@ Hint: | don't care about 36 # 37

(define minus-fact-of-36
(let ([v (fib 36)1) Computes (fib 36) once
(lambda (x)
(- xv)))

(define minus-fact-of-37
(lambda (x) ;
(let ([v (£ib 37)1) Computes (fib 37) every call

(- xv))) J

© o N o o » w N H

Cody Schroeder CSE341 — Section 6



Refresher Lexical Scope

Mutation

We care even more about scoping rules in the presence of mutation.

What do these procedures do when called?

1 (define increment-and-returni
2 (let ([v 01)

3 (lambda (x)

4 (begin (set! v (+ x v))
5 v))))

6

7 (define increment-and-return?2
8

9

(lambda (x) Incorrect: will always return x
(let ([v 01)
10 (begin (set! v (+ x v))
11 v))))

increment-and-return is meant to be a function that keeps a
global counter and increments the counter with x during each call.

Cody Schroeder CSE341 — Section 6



Refresher Lexical Scope

set! vs set-mcar! and friends

Mutation Functions

@ In Racket there are multiple functions that have mutation as a
side-effect.

o set! assigns to some variable. It updates its value in the
environment.

e In Java, analogous to x = 5; (where 5 is just some value)
o set-mcar! and set-mcdr! assigns to the fields of a mpair
structure.
@ car and cdr could be considered fields in a mpair structure
o In Java, analogous to x.car = 5; and x.cdr = 10;

@ See http://docs.racket-lang.org/reference/mpairs.html for a
reference on mpairs.

Cody Schroeder CSE341 — Section 6


http://docs.racket-lang.org/reference/mpairs.html

General Memoization
Back to Fibonacci

Why is this procedure slow?

1 (define (fib n)
2 (If (<= n 1)
3 n

(+ (fib (- n 1)) (fib (- n 2)))))

Cody Schroeder CSE341 — Section 6



General Memoization

Visualizing Fibonacci

Calling (fib 4)

There's a lot of redundant computation in this implementation.

Cody Schroeder CSE341 — Section 6



General Memoization
Memoization

@ Our fibonacci function ends up recomputing many values in
the long run due to the recursive structure of the solution.
o How can we fix this? (Other than using an iterative solution. . .)
@ How about we store already computed results in some sort of
cache?

o The cache could be a mutable structure that will be added to
as new results are computed.
e This is the idea of memoization!

@ In the previous tree example, the entire right subtree doesn’t
have to be recomputed. It'll be found in the cache.

@ Our fibonacci function will become exponentially faster.

Cody Schroeder CSE341 — Section 6



General Memoization
Associative Lists

@ We will use an associative list for our cache.

@ It's just a list of key-value pairs.

@ There's a library function named assoc that will do lookups on
a key in any valid associative list for us.

o Locates the first pair in the list in which its car is equal? to
the requested key value. Returns the entire pair found. If the
key isn't found, it returns #f.

1 (define a-1st (list (cons 1 2)

2 (cons )

g (cons 42 #t)))

4

5 (displayln (assoc 1 a-1st)) P (1. 2)

6 (displayln (assoc a-1st)) ; (Cody . Schroeder)
7 (displayln (assoc 42 a-1st)) v (42 . #t)

s (displayln (assoc a-1st)) ; #f

Cody Schroeder CSE341 — Section 6



General Memoization
One Way of Fixing Fibonacci

A Memoized Fibonacci

1 (define fib

2 (let ([memo '((0 . 0) (1 . 1D

3 (lambda (n)

4 (let ([prev-ans (assoc n memo)])

5 (if prev-ans

6 (cdr prev-ans)

7 (let ([ans (+ (fib (- n 1)) (fib (- n 2)))1)
s (set! memo (cons (cons n ans) memo))

o ans))))))

@ How fast can (fib 70000) be computed now?

Cody Schroeder CSE341 — Section 6



Fibonacci

General Memoization

The Basic Pattern

1 (define function-name

2 (let ([memo '()]) ;; memo can store base cases

3 (lambda (x) ;; We could have more arguments, if we wanted.

a (let ([prev-ans (assoc x memo)]) ;; Check for saved result

5 (if prev-ans

6 (cdr prev-ans) ;; Just return memo'd answer

7 (let ([new-ans (compute x)]) ;; Compute a new answer
s (set! memo (cons (cons x new-ans) memo)) ;; Save it
o new-ans)))))) ;; Return the new answer

Cody Schroeder CSE341 — Section 6



Working with Streams

Stream Definition

A Stream Is. ..

@ A thunk that evaluates to a pair of an element and another stream.

@ This is an infinitely recursive definition. There's no end to a stream.

Example

(define natural-numbers
(letrec ([next-nat (lambda (n)

1
2
3 (lambda () (cons n (mext-nat (+ 1 n)))))1)
a (next-nat 1)))

\

Cody Schroeder CSE341 — Section 6



Definition
Working with Streams

See code: streams.rkt.

Cody Schroeder CSE341 — Section 6



	SML/Racket
	Refresher
	Lexical Scope
	Mutation

	Memoization
	Fibonacci
	General Memoization

	Streams
	Definition
	Working with Streams


